Dual Role of Exosome in Neurodegenerative Diseases: A Review Study


Cite item

Full Text

Abstract

Introduction:Extracellular vesicles (EVs) are one of the crucial means of intercellular communication, which takes many different forms. They are heterogeneous, secreted by a range of cell types, and can be generally classified into microvesicles and exosomes depending on their location and function. Exosomes are small EVs with diameters of about 30–150 nm and diverse cell sources.

Methods:The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of recent years, using the search string \"Exosome\" and \"Neurodegenerative diseases.\"

Results:The exosomes have attracted interest as a significant biomarker for a better understanding of disease development, gene silencing delivery, and alternatives to stem cell-based therapy because of their low-invasive therapeutic approach, repeatable distribution in the central nervous system (CNS), and high efficiency. Also, they are nanovesicles that carry various substances, which can have an impact on neural plasticity and cognitive functioning in both healthy and pathological circumstances. Therefore, exosomes are conceived as nanovesicles containing proteins, lipids, and nucleic acids. However, their composition varies considerably depending on the cells from which they are produced.

Conclusion:In the present review, we discuss several techniques for the isolation of exosomes from different cell sources. Furthermore, reviewing research on exosomes' possible functions as carriers of bioactive substances implicated in the etiology of neurodegenerative illnesses, we further examine them. We also analyze the preclinical and clinical research that shows exosomes to have therapeutic potential.

About the authors

Mohsen Sheykhhasan

Research Center for Molecular Medicine, Hamadan University of Medical Sciences

Email: info@benthamscience.net

Fatemeh Heidari

Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences

Email: info@benthamscience.net

Mohsen Eslami Farsani

Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences

Email: info@benthamscience.net

Maryam Azimzadeh

Department of Medical Laboratory Sciences, Khomein University of Medical Sciences

Email: info@benthamscience.net

Naser Kalhor

Department of Mesenchymal Stem Cells, Academic Center for Education

Email: info@benthamscience.net

Shima Ababzadeh

Cellular and Molecular Research Center, Qom University of Medical Sciences

Email: info@benthamscience.net

Reihaneh Seyedebrahimi

Cellular and Molecular Research Center, Qom University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Beck S, Hochreiter B, Schmid JA. Extracellular vesicles linking inflammation, cancer and thrombotic risks. Front Cell Dev Biol 2022; 10: 859863. doi: 10.3389/fcell.2022.859863 PMID: 35372327
  2. Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178: 113961. doi: 10.1016/j.addr.2021.113961 PMID: 34481030
  3. Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: Emerging complexities. Trends Cell Biol 2023; S0962-8924(23): 00005-3. PMID: 36737375
  4. Chung IM, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: Current use and future applications. Clin Chim Acta 2020; 500: 226-32. doi: 10.1016/j.cca.2019.10.022 PMID: 31678573
  5. Doyle L, Wang M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019; 8(7): 727-9. doi: 10.3390/cells8070727 PMID: 31311206
  6. Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. Korean J Physiol Pharmacol 2018; 22(2): 113-25. doi: 10.4196/kjpp.2018.22.2.113 PMID: 29520164
  7. Wan R, Hussain A, Behfar A, Moran SL, Zhao C. The therapeutic potential of exosomes in soft tissue repair and regeneration. Int J Mol Sci 2022; 23(7): 3869. doi: 10.3390/ijms23073869 PMID: 35409228
  8. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20. doi: 10.1016/S0021-9258(18)48095-7 PMID: 3597417
  9. Chen J, Zhang Q, Liu D, Liu Z. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism 2021; 122: 154834. doi: 10.1016/j.metabol.2021.154834 PMID: 34217734
  10. Elahi FM, Farwell DG, Nolta JA, Anderson JD. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells 2020; 38(1): 15-21. doi: 10.1002/stem.3061 PMID: 31381842
  11. Allan D, Tieu A, Lalu M, Burger D. Mesenchymal stromal cell-derived extracellular vesicles for regenerative therapy and immune modulation: Progress and challenges toward clinical application. Stem Cells Transl Med 2020; 9(1): 39-46. doi: 10.1002/sctm.19-0114 PMID: 31411820
  12. Wu R, Gao W, Yao K, Ge J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front Immunol 2019; 10: 648-51. doi: 10.3389/fimmu.2019.00648 PMID: 30984201
  13. Aheget H, Tristán-Manzano M, Mazini L, et al. Exosome: A new player in translational nanomedicine. J Clin Med 2020; 9(8): 2380. doi: 10.3390/jcm9082380 PMID: 32722531
  14. Li N, Zhao L, Wei Y, Ea VL, Nian H, Wei R. Recent advances of exosomes in immune-mediated eye diseases. Stem Cell Res Ther 2019; 10(1): 278. doi: 10.1186/s13287-019-1372-0 PMID: 31470892
  15. Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell–derived exosomes on experimental type 1 autoimmune diabetes. J Cell Biochem 2018; 119(11): 9433-43. doi: 10.1002/jcb.27260 PMID: 30074271
  16. Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther 2018; 9(1): 187. doi: 10.1186/s13287-018-0939-5 PMID: 29996938
  17. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977. doi: 10.1126/science.aau6977 PMID: 32029601
  18. Jiang L, Dong H, Cao H, Ji X, Luan S, Liu J. Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Med Sci Monit 2019; 25: 3329-35. doi: 10.12659/MSM.914027 PMID: 31056537
  19. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9. doi: 10.1038/ncb1596 PMID: 17486113
  20. Farooqi AA, Desai NN, Qureshi MZ, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36(1): 328-34. doi: 10.1016/j.biotechadv.2017.12.010 PMID: 29248680
  21. Li XX, Yang LX, Wang C, Li H, Shi DS, Wang J. The roles of exosomal proteins: Classification, function, and applications. Int J Mol Sci 2023; 24(4): 3061. doi: 10.3390/ijms24043061 PMID: 36834471
  22. Hedayat M, Ahmadi M, Shoaran M, Rezaie J. Therapeutic application of mesenchymal stem cells derived exosomes in neurodegenerative diseases: A focus on non-coding RNAs cargo, drug delivery potential, perspective. Life Sci 2023; 320: 121566. doi: 10.1016/j.lfs.2023.121566 PMID: 36907326
  23. Salvioli S, Olivieri F, Marchegiani F, et al. Genes, ageing and longevity in humans: Problems, advantages and perspectives. Free Radic Res 2006; 40(12): 1303-23. doi: 10.1080/10715760600917136 PMID: 17090420
  24. Pedersen SF, Ho YC. SARS-CoV-2: A storm is raging. J Clin Invest 2020; 130(5): 2202-5. doi: 10.1172/JCI137647 PMID: 32217834
  25. Kordelas L, Rebmann V, Ludwig A-K, et al. MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014; 28(4): 970-3. doi: 10.1038/leu.2014.41 PMID: 24445866
  26. Phinney DG. Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy. J Cell Biochem 2012; 113(9): 2806-12. doi: 10.1002/jcb.24166 PMID: 22511358
  27. Huang R, Qin C, Wang J, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 2019; 11(18): 7996-8014. doi: 10.18632/aging.102314 PMID: 31575829
  28. Yuan L, Li JY. Exosomes in Parkinson’s disease: Current perspectives and future challenges. ACS Chem Neurosci 2019; 10(2): 964-72. doi: 10.1021/acschemneuro.8b00469 PMID: 30664350
  29. Dai J, Su Y, Zhong S, et al. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5(1): 145. doi: 10.1038/s41392-020-00261-0 PMID: 32759948
  30. Castaño C, Kalko S, Novials A, Párrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci 2018; 115(48): 12158-63. doi: 10.1073/pnas.1808855115 PMID: 30429322
  31. Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4(1): 30087. doi: 10.3402/jev.v4.30087 PMID: 26725829
  32. Sun Y, Shi H, Yin S, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 2018; 12(8): 7613-28. doi: 10.1021/acsnano.7b07643 PMID: 30052036
  33. Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun Signal 2022; 20(1): 145. doi: 10.1186/s12964-022-00959-4 PMID: 36123730
  34. Corradetti B, Gonzalez D, Mendes Pinto I, Conlan RS. Editorial: Exosomes as therapeutic systems. Front Cell Dev Biol 2021; 9: 714743. doi: 10.3389/fcell.2021.714743 PMID: 34368165
  35. Hussen BM, Faraj GSH, Rasul MF, et al. Strategies to overcome the main challenges of the use of exosomes as drug carrier for cancer therapy. Cancer Cell Int 2022; 22(1): 323-7. doi: 10.1186/s12935-022-02743-3 PMID: 36258195
  36. Weng S, Lai QL, Wang J, et al. The role of exosomes as mediators of neuroinflammation in the pathogenesis and treatment of Alzheimer’s disease. Front Aging Neurosci 2022; 14: 899944. doi: 10.3389/fnagi.2022.899944 PMID: 35837481
  37. Gandham S, Su X, Wood J, et al. Technologies and standardization in research on extracellular vesicles. Trends Biotechnol 2020; 38(10): 1066-98. doi: 10.1016/j.tibtech.2020.05.012 PMID: 32564882
  38. Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 2018; 9: 738-41. doi: 10.3389/fimmu.2018.00738 PMID: 29760691
  39. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804. doi: 10.7150/thno.18133 PMID: 28255367
  40. Karimi N, Cvjetkovic A, Jang SC, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci 2018; 75(15): 2873-86. doi: 10.1007/s00018-018-2773-4 PMID: 29441425
  41. Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020; 10(8): 3684-707. doi: 10.7150/thno.41580 PMID: 32206116
  42. Chen J, Li P, Zhang T, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol 2022; 9: 811971. doi: 10.3389/fbioe.2021.811971 PMID: 35071216
  43. Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021; 1636: 461773. doi: 10.1016/j.chroma.2020.461773 PMID: 33316564
  44. Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int J Mol Sci 2020; 21(18): 6466. doi: 10.3390/ijms21186466 PMID: 32899828
  45. Talebjedi B, Tasnim N, Hoorfar M, Mastromonaco GF, De Almeida Monteiro Melo Ferraz M. Exploiting microfluidics for extracellular vesicle isolation and characterization: Potential use for standardized embryo quality assessment. Front Vet Sci 2021; 7: 620809. doi: 10.3389/fvets.2020.620809 PMID: 33469556
  46. Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic approaches and methods enabling extracellular vesicle isolation for cancer diagnostics. Micromachines 2022; 13(1): 139. doi: 10.3390/mi13010139 PMID: 35056304
  47. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11): 1959-72. doi: 10.1038/jcbfm.2012.126 PMID: 22929442
  48. Tomlinson PR, Zheng Y, Fischer R, et al. Identification of distinct circulating exosomes in Parkinson’s disease. Ann Clin Transl Neurol 2015; 2(4): 353-61. doi: 10.1002/acn3.175 PMID: 25909081
  49. Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, et al. Exosomal delivery of therapeutic modulators through the blood–brain barrier; promise and pitfalls. Cell Biosci 2021; 11(1): 142. doi: 10.1186/s13578-021-00650-0 PMID: 34294165
  50. Huang Y, Liu Z, Li N, et al. Parkinson’s disease derived exosomes aggravate neuropathology inSNCA * A53T Mice. Ann Neurol 2022; 92(2): 230-45. doi: 10.1002/ana.26421 PMID: 35596947
  51. Sun K, Zheng X, Jin H, Yu F, Zhao W. Exosomes as CNS drug delivery tools and their applications. Pharmaceutics 2022; 14(10): 2252. doi: 10.3390/pharmaceutics14102252 PMID: 36297688
  52. Khan SU, Khan MU, Gao Y, et al. Unique therapeutic potentialities of exosomes based nanodrug carriers to target tumor microenvironment in cancer therapy. OpenNano 2022; 8: 100091. doi: 10.1016/j.onano.2022.100091
  53. Khan SU, Khan MI, Khan MU, Khan NM, Bungau S, Hassan SS. Applications of extracellular vesicles in nervous system disorders: An overview of recent advances. Bioengineering 2022; 10(1): 51. doi: 10.3390/bioengineering10010051 PMID: 36671622
  54. Suire CN, Hade MD. Extracellular vesicles in type 1 diabetes: A versatile tool. Bioengineering 2022; 9(3): 105-10. doi: 10.3390/bioengineering9030105 PMID: 35324794
  55. Holm MM, Kaiser J, Schwab ME. Extracellular vesicles: Multimodal envoys in neural maintenance and repair. Trends Neurosci 2018; 41(6): 360-72. doi: 10.1016/j.tins.2018.03.006 PMID: 29605090
  56. Delpech JC, Herron S, Botros MB, Ikezu T. Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci 2019; 42(5): 361-72. doi: 10.1016/j.tins.2019.02.007 PMID: 30926143
  57. Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 2019; 67: 268-80. doi: 10.1016/j.intimp.2018.12.001 PMID: 30572251
  58. Farinazzo A, Angiari S, Turano E, et al. Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis. Sci Rep 2018; 8(1): 7473. doi: 10.1038/s41598-018-25676-2 PMID: 29748664
  59. Elia CA, Tamborini M, Rasile M, et al. Intracerebral injection of extracellular vesicles from mesenchymal stem cells exerts reduced Aβ plaque burden in early stages of a preclinical model of alzheimer’s disease. Cells 2019; 8(9): 1059. doi: 10.3390/cells8091059 PMID: 31510042
  60. Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011; 19(10): 1769-79. doi: 10.1038/mt.2011.164 PMID: 21915101
  61. Jahangard Y, Monfared H, Moradi A, Zare M, Mirnajafi-Zadeh J, Mowla SJ. Therapeutic effects of transplanted exosomes containing miR-29b to a rat model of Alzheimer’s disease. Front Neurosci 2020; 14: 564. doi: 10.3389/fnins.2020.00564 PMID: 32625049
  62. Mobahat M, Sadroddiny E, Nooshabadi VT, Ebrahimi-Barough S, Goodarzi A, Malekshahi ZV, et al. Curcumin-loaded human endometrial stem cells derived exosomes as an effective carrier to suppress alpha-synuclein aggregates in 6OHDA-induced Parkinson’s disease mouse model. Cell Tissue Bank 2022; 24(1): 75-91. PMID: 35641803
  63. Xue C, Li X, Ba L, et al. MSC-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson’s disease. Aging Dis 2021; 12(5): 1211-22. doi: 10.14336/AD.2020.1221 PMID: 34341703
  64. Sun T, Ding ZX, Luo X, Liu QS, Cheng Y. Blood exosomes have neuroprotective effects in a mouse model of Parkinson’s disease. Oxid Med Cell Longev 2020; 2020: 1-14. doi: 10.1155/2020/3807476 PMID: 33294121
  65. Lee M, Liu T, Im W, Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur J Neurosci 2016; 44(4): 2114-9. doi: 10.1111/ejn.13275 PMID: 27177616
  66. Lee ST, Im W, Ban JJ, et al. Exosome-based delivery of miR-124 in a Huntington’s disease model. J Mov Disord 2017; 10(1): 45-52. doi: 10.14802/jmd.16054 PMID: 28122430
  67. Joshi BS, Youssef SA, Bron R. DNAJB6-enriched exosomes decrease polyglutamine aggregation in in vitro and in vivo models of Huntington’s disease. iScience 2021; 163-6.
  68. Zhou Y, Xiao S, Li C, Chen Z, Zhu C, Zhou Q, et al. Extracellular vesicle-encapsulated miR-183-5p from rhynchophylline-treated H9c2 cells protect against methamphetamine-induced dependence in mouse brain by targeting NRG1. Evid Based Complement Alternat Med 2021; 2021: 2136076. doi: 10.1155/2021/2136076 PMID: 34484386
  69. Ezquer F, Quintanilla ME, Morales P, et al. Intranasal delivery of mesenchymal stem cell-derived exosomes reduces oxidative stress and markedly inhibits ethanol consumption and post-deprivation relapse drinking. Addict Biol 2019; 24(5): 994-1007. doi: 10.1111/adb.12675 PMID: 30239077
  70. Azimzadeh M, Möhn N, Ghane Ezabadi S, et al. The immunological therapeutic strategies for controlling multiple sclerosis: Considerations during the covid-19 pandemic. Biomolecules 2021; 11(9): 1372. doi: 10.3390/biom11091372 PMID: 34572585
  71. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: Mechanisms and immunotherapy. Neuron 2018; 97(4): 742-68. doi: 10.1016/j.neuron.2018.01.021 PMID: 29470968
  72. Pusic AD, Pusic KM, Kraig RP. What are exosomes and how can they be used in multiple sclerosis therapy? Expert Rev Neurother 2014; 14(4): 353-5. doi: 10.1586/14737175.2014.890893 PMID: 24552578
  73. Baharlooi H, Salehi Z, Minbashi Moeini M, Rezaei N, Azimi M. Immunomo sis. Adv Pharm Bull 2022; 12(2): 389-97. PMID: 35620339
  74. Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 2019; 13(6): 6670-88. doi: 10.1021/acsnano.9b01004 PMID: 31117376
  75. Zhang J, Buller BA, Zhang ZG, et al. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol 2022; 347: 113895. doi: 10.1016/j.expneurol.2021.113895 PMID: 34653510
  76. Gupta D, Wiklander OPB, Görgens A, Conceição M, Corso G, Liang X, et al. Engineering of extracellular vesicles for display of protein biotherapeutics. bioRxiv 2020; 2021: 149823. doi: 10.1101/2020.06.14.149823
  77. Zheng X, Sun K, Liu Y, et al. Resveratrol-loaded macrophage exosomes alleviate multiple sclerosis through targeting microglia. J Control Release 2023; 353: 675-84. doi: 10.1016/j.jconrel.2022.12.026 PMID: 36521687
  78. Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem cell-derived exosomes: A new strategy of neurodegenerative disease treatment. Mol Neurobiol 2021; 58(7): 3494-514. doi: 10.1007/s12035-021-02324-x PMID: 33745116
  79. Hosseini Shamili F, Alibolandi M, Rafatpanah H, et al. Immunomodulatory properties of MSC-derived exosomes armed with high affinity aptamer toward mylein as a platform for reducing multiple sclerosis clinical score. J Control Release 2019; 299: 149-64. doi: 10.1016/j.jconrel.2019.02.032 PMID: 30807806
  80. Wu XY, Liao BY, Xiao D, et al. Encapsulation of bryostatin-1 by targeted exosomes enhances remyelination and neuroprotection effects in the cuprizone-induced demyelinating animal model of multiple sclerosis. Biomater Sci 2022; 10(3): 714-27. doi: 10.1039/D1BM01142A PMID: 34928285
  81. Kimura K, Hohjoh H, Yamamura T. The role for exosomal microRNAs in disruption of regulatory T cell homeostasis in multiple sclerosis. J Exp Neurosci 2018; 12. doi: 10.1177/1179069518764892 PMID: 29623002
  82. Ebrahimkhani S, Vafaee F, Young PE, et al. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 2017; 7(1): 14293. doi: 10.1038/s41598-017-14301-3 PMID: 29084979
  83. Gandhi R, Healy B, Gholipour T, et al. Circulating MicroRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 2013; 73(6): 729-40. doi: 10.1002/ana.23880 PMID: 23494648
  84. Manna I, Iaccino E, Dattilo V, et al. Exosome associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients. FASEB J 2018; 32(8): 4241-6. doi: 10.1096/fj.201701533R PMID: 29505299
  85. Ebrahimkhani S, Beadnall HN, Wang C, et al. Serum exosome microRNAs predict multiple sclerosis disease activity after fingolimod treatment. Mol Neurobiol 2020; 57(2): 1245-58. doi: 10.1007/s12035-019-01792-6 PMID: 31721043
  86. Mrad MF, Saba ES, Nakib L, Khoury SJ. Exosomes from subjects with multiple sclerosis express EBV-derived proteins and activate monocyte-derived macrophages. Neurol Neuroimmunol Neuroinflamm 2021; 8(4): e1004. doi: 10.1212/NXI.0000000000001004 PMID: 34006621
  87. Ising C, Heneka MT. Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis 2018; 9(2): 120. doi: 10.1038/s41419-017-0153-x PMID: 29371603
  88. Khan TK, Alkon DL. Peripheral biomarkers of Alzheimer’s disease. J Alzheimers Dis 2015; 44(3): 729-44. doi: 10.3233/JAD-142262 PMID: 25374110
  89. Beker M, Gunay N, Sarikamis B, et al. Dual action of exosomes derived from in vitro Aβ toxicity model: The role of age for pathological response. Arch Gerontol Geriatr 2023; 106: 104874. doi: 10.1016/j.archger.2022.104874 PMID: 36470179
  90. Takahashi RH, Milner TA, Li F, et al. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 2002; 161(5): 1869-79. doi: 10.1016/S0002-9440(10)64463-X PMID: 12414533
  91. Saman S, Kim W, Raya M, et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 2012; 287(6): 3842-9. doi: 10.1074/jbc.M111.277061 PMID: 22057275
  92. Fiandaca MS, Kapogiannis D, Mapstone M, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case control study. Alzheimers Dement 2015; 11(6): 600-7.e1. doi: 10.1016/j.jalz.2014.06.008 PMID: 25130657
  93. Lark DS, LaRocca TJ. Expression of exosome biogenesis genes is differentially altered by aging in the mouse and in the human brain during Alzheimer’s Disease. J Gerontol A Biol Sci Med Sci 2022; 77(4): 659-63. doi: 10.1093/gerona/glab322 PMID: 34687299
  94. Chen YA, Lu CH, Ke CC, et al. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer’s disease pathology and improve cognitive deficits. Biomedicines 2021; 9(6): 594. doi: 10.3390/biomedicines9060594 PMID: 34073900
  95. Soares Martins T, Trindade D, Vaz M, et al. Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J Neurochem 2021; 156(2): 162-81. doi: 10.1111/jnc.15112 PMID: 32618370
  96. Nakano M, Fujimiya M. Potential effects of mesenchymal stem cell derived extracellular vesicles and exosomal miRNAs in neurological disorders. Neural Regen Res 2021; 16(12): 2359-66. doi: 10.4103/1673-5374.313026 PMID: 33907007
  97. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5. doi: 10.1038/nbt.1807 PMID: 21423189
  98. Cone AS, Yuan X, Sun L, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics 2021; 11(17): 8129-42. doi: 10.7150/thno.62069 PMID: 34373732
  99. Cheng L, Doecke JD, Sharples RA, et al. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 2015; 20(10): 1188-96. doi: 10.1038/mp.2014.127 PMID: 25349172
  100. Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015; 6(35): 37043-53. doi: 10.18632/oncotarget.6158 PMID: 26497684
  101. Dong Z, Gu H, Guo Q, et al. Circulating small extracellular vesicle-derived miR-342-5p ameliorates beta-amyloid formation via targeting beta-site APP cleaving enzyme 1 in Alzheimer’s Disease. Cells 2022; 11(23): 3830. doi: 10.3390/cells11233830 PMID: 36497090
  102. Goetzl EJ, Kapogiannis D, Schwartz JB, et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J 2016; 30(12): 4141-8. doi: 10.1096/fj.201600816R PMID: 27601437
  103. Liang X, Fa W, Wang N, Peng Y, Liu C, Zhu M, et al. Exosomal miR-532-5p induced by long-term exercise rescues blood-brain barrier function in 5XFAD mice via downregulation of EPHA4. Aging Cell 2023; 22(1): e13748. doi: 10.1111/acel.13748. PMID: 36494892
  104. Cai H, Pang Y, Wang Q, et al. Proteomic profiling of circulating plasma exosomes reveals novel biomarkers of Alzheimer’s disease. Alzheimers Res Ther 2022; 14(1): 181-6. doi: 10.1186/s13195-022-01133-1 PMID: 36471423
  105. Wang S, Cesca F, Loers G, et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 2011; 31(20): 7275-90. doi: 10.1523/JNEUROSCI.6476-10.2011 PMID: 21593312
  106. Lotfy A, AboQuella NM, Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther 2023; 14(1): 66-71. doi: 10.1186/s13287-023-03287-7 PMID: 37024925
  107. Charvin D, Medori R, Hauser RA, Rascol O. Therapeutic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat Rev Drug Discov 2018; 17(11): 804-22. doi: 10.1038/nrd.2018.136 PMID: 30262889
  108. Yu H, Sun T, An J, et al. Potential roles of exosomes in Parkinson’s disease: From pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol 2020; 8: 86. doi: 10.3389/fcell.2020.00086 PMID: 32154247
  109. Stuendl A, Kunadt M, Kruse N, et al. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 2016; 139(2): 481-94. doi: 10.1093/brain/awv346 PMID: 26647156
  110. Shi M, Liu C, Cook TJ, et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 2014; 128(5): 639-50. doi: 10.1007/s00401-014-1314-y PMID: 24997849
  111. Grey M, Dunning CJ, Gaspar R, et al. Acceleration of α-synuclein aggregation by exosomes. J Biol Chem 2015; 290(5): 2969-82. doi: 10.1074/jbc.M114.585703 PMID: 25425650
  112. de Rus Jacquet A, Tancredi JL, Lemire AL, DeSantis MC, Li WP, O’Shea EK. The LRRK2 G2019S mutation alters astrocyte-to-neuron communication via extracellular vesicles and induces neuron atrophy in a human iPSC-derived model of Parkinson’s disease. eLife 2021; 10: e73062. doi: 10.7554/eLife.73062 PMID: 34590578
  113. Mysiris DS, Vavougios GD, Karamichali E, et al. Post-COVID-19 parkinsonism and parkinson’s disease pathogenesis: The exosomal cargo hypothesis. Int J Mol Sci 2022; 23(17): 9739. doi: 10.3390/ijms23179739 PMID: 36077138
  114. Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging potential of exosomal Non-coding RNA in Parkinson’s Disease: A review. Front Aging Neurosci 2022; 14: 819836. doi: 10.3389/fnagi.2022.819836 PMID: 35360206
  115. Nila IS, Sumsuzzman DM, Khan ZA, et al. Identification of exosomal biomarkers and its optimal isolation and detection method for the diagnosis of Parkinson’s disease: A systematic review and meta-analysis. Ageing Res Rev 2022; 82: 101764. doi: 10.1016/j.arr.2022.101764 PMID: 36273807
  116. Jiang T, Xu C, Gao S, Zhang J, Zheng J, Wu X, et al. Cathepsin Lcontaining exosomes from α-synuclein-activated microglia induce neurotoxicity through the P2X7 receptor. NPJ Parkinsons Dis 2022; 8(1): 127. doi: 10.1038/s41531-022-00394-9. PMID: 36202834
  117. Peng H, Li Y, Ji W, et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of parkinson’s disease. ACS Nano 2022; 16(1): 869-84. doi: 10.1021/acsnano.1c08473 PMID: 34985280
  118. Chen Z, Xu C, Li G, Wen Z, Liu J, Mao Z. Neuron-derived exosomes trigger a PD-L1-mediated broad suppression of T cells in Parkinson’s disease. Res Square 2022. doi: 10.21203/rs.3.rs-2109216/v1
  119. Lee HK, Finniss S, Cazacu S, Xiang C, Brodie C. Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression. Stem Cells Dev 2014; 23(23): 2851-61. doi: 10.1089/scd.2014.0146 PMID: 25036385
  120. Qu M, Lin Q, Huang L, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J Control Release 2018; 287: 156-66. doi: 10.1016/j.jconrel.2018.08.035 PMID: 30165139
  121. McColgan P, Tabrizi SJ. Huntington’s disease: A clinical review. Eur J Neurol 2018; 25(1): 24-34. doi: 10.1111/ene.13413 PMID: 28817209
  122. Dayalu P, Albin RL. Huntington Disease. Neurol Clin 2015; 33(1): 101-14. doi: 10.1016/j.ncl.2014.09.003 PMID: 25432725
  123. Hong Y, Zhao T, Li XJ, Li S. Mutant huntingtin inhibits αB-crystallin expression and impairs exosome secretion from astrocytes. J Neurosci 2017; 37(39): 9550-63. doi: 10.1523/JNEUROSCI.1418-17.2017 PMID: 28893927
  124. Didiot MC, Hall LM, Coles AH, et al. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther 2016; 24(10): 1836-47. doi: 10.1038/mt.2016.126 PMID: 27506293
  125. Lee M, Im W, Kim M. Exosomes as a potential messenger unit during heterochronic parabiosis for amelioration of Huntington’s disease. Neurobiol Dis 2021; 155: 105374. doi: 10.1016/j.nbd.2021.105374 PMID: 33940179
  126. Barbagallo C, Mostile G, Baglieri G, et al. Specific signatures of serum miRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases. Cell Mol Neurobiol 2020; 40(4): 531-46. doi: 10.1007/s10571-019-00751-y PMID: 31691877
  127. Rani P, Karthik S. Molecular signatures in exosomes as diagnostic markers for neurodegenerative disorders. Ann Alzheimers Dement Care 2020; 4(1): 012-7.
  128. Ananbeh H, Vodicka P, Kupcova Skalnikova H. Emerging roles of exosomes in Huntington’s Disease. Int J Mol Sci 2021; 22(8): 4085. doi: 10.3390/ijms22084085 PMID: 33920936
  129. Cao X, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube. Genes Dev 2007; 21(5): 531-6. doi: 10.1101/gad.1519207 PMID: 17344415
  130. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 2018; 13(1): 44. doi: 10.1186/s11671-018-2457-x PMID: 29417375
  131. Kranzler HR, Li T-K. What is addiction? Alcohol Res Health 2008; 31(2): 93-5. PMID: 23584810
  132. Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics 2017; 14(3): 687-97. doi: 10.1007/s13311-017-0525-z PMID: 28324454
  133. Kumar A, Kim S, Su Y, et al. Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine 2021; 63: 103192. doi: 10.1016/j.ebiom.2020.103192 PMID: 33418508
  134. Anthony IC, Norrby KE, Dingwall T, et al. Predisposition to accelerated Alzheimer-related changes in the brains of human immunodeficiency virus negative opiate abusers. Brain 2010; 133(12): 3685-98. doi: 10.1093/brain/awq263 PMID: 21126996
  135. Dominy SS, Brown JN, Ryder MI, Gritsenko M, Jacobs JM, Smith RD. Proteomic analysis of saliva in HIV-positive heroin addicts reveals proteins correlated with cognition. PLoS One 2014; 9(4): e89366. doi: 10.1371/journal.pone.0089366 PMID: 24717448
  136. Shahjin F, Guda RS, Schaal VL, et al. Brain-derived extracellular vesicle microRNA signatures associated with in utero and postnatal oxycodone exposure. Cells 2019; 9(1): 21-5. doi: 10.3390/cells9010021 PMID: 31861723
  137. Hollander JA. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010; 466(7303): 197-202.
  138. Carone C, Genedani S, Leo G, Filaferro M, Fuxe K, Agnati LF. in vitro effects of cocaine on tunneling nanotube formation and extracellular vesicle release in glioblastoma cell cultures. J Mol Neurosci 2015; 55(1): 42-50. doi: 10.1007/s12031-014-0365-9 PMID: 24996625
  139. Liu Y, Li D, Liu Z, et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep 2015; 5(1): 17543. doi: 10.1038/srep17543 PMID: 26633001
  140. Sheykhhasan M, Amini R, Soleimani Asl S, Saidijam M, Hashemi SM, Najafi R. Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer's disease. Biomed Pharmacother 2022; 152: 113224. Epub 2022 Jun 6. doi: 10.1016/j.biopha.2022.113224 PMID: 35679720

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers