Effects of Growth Factors on the Differentiation of Dental Stem Cells: A Systematic Review and Meta-analysis (Part I)


Cite item

Full Text

Abstract

Introduction:To evaluate the biological interaction between dental stem cells (DSCs) and different growth factors in the field of regenerative endodontics.

Methods:A systematic search was conducted in the electronic databases up to October 2021. This study followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Ex vivo studies evaluating the biological interactions of DSCs and growth factors were included. The meta-analysis was performed according to the type of growth factor. The outcomes were cell viability/ proliferation and mineralization. Standardized mean differences (SMDs) were estimated using the random-effect maximum-likelihood method (P < .05). Additional analysis was performed to find any potential source of heterogeneity.

Results:Twenty articles were included in the systematic review; meta-analysis was performed for fibroblast growth factor-2 (FGF-2) and Transforming growth factor-ß1 (TGF-β1) (n = 5). Results showed that use of FGF-2 significantly increased cell proliferation on day 1-(SMD = 3.56, P = 0.00), 3-(SMD = 9.04, P = 0.00), 5-(SMD = 8.37, P = 0.01), and 7 (SMD=8.51, P=0.00) than the control group. TGF-ß1 increased alkaline phosphatase (ALP) activity more than control only on day 3 (SMD = 3.68, P = 0.02). TGF-β1 had no significant effect on cell proliferation on days 1 and 3 (P > 0.05) and on ALP activity on days 5 and 7 (P > 0.05). Meta-regression analysis showed that different covariates (i.e., cell type, passage number, and growth factors' concentration) could significantly influence the effect sizes at different follow- ups (p < 0.05).

Conclusion:Specific growth factors might enhance the proliferation and mineralization of DSCs; however, the obtained evidence was weak. Due to the high heterogeneity among the included studies, other growth factors' inhibitory/stimulatory effects on DSCs could not be evaluated.

About the authors

Sayna Shamszadeh

Iranian Center for Endodontic Research, Research Institute of Dental Sciences,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Armin Shirvani

Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Hassan Torabzadeh

Dental Research Center, Research Institute of Dental Sciences,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Saeed Asgary

Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Thesleff I. Developmental biology and building a tooth. Quintessence Int 2003; 34(8): 613-20. PMID: 14620213
  2. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 2000; 92(1): 19-29. doi: 10.1016/S0925-4773(99)00322-6 PMID: 10704885
  3. Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev 1997; 67(2): 111-23. doi: 10.1016/S0925-4773(97)00115-9 PMID: 9392510
  4. Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol 2002; 217: 93-135. doi: 10.1016/S0074-7696(02)17013-6 PMID: 12019566
  5. Cho YD, Yoon WJ, Woo KM, Baek JH, Park JC, Ryoo HM. The canonical BMP signaling pathway plays a crucial part in stimulation of dentin sialophosphoprotein expression by BMP-2. J Biol Chem 2010; 285(47): 36369-76. doi: 10.1074/jbc.M110.103093 PMID: 20843790
  6. Kwon HE, Jia S, Lan Y, Liu H, Jiang R. Activin and Bmp4 signaling converge on Wnt activation during odontogenesis. J Dent Res 2017; 96(10): 1145-52. doi: 10.1177/0022034517713710 PMID: 28605600
  7. Wang Y, Li L, Zheng Y, et al. BMP activity is required for tooth development from the lamina to bud stage. J Dent Res 2012; 91(7): 690-5. doi: 10.1177/0022034512448660 PMID: 22592126
  8. Bègue-Kirn C, Smith AJ, Loriot M, Kupferle C, Ruch JV, Lesot H. Comparative analysis of TGF beta s, BMPs, IGF1, msxs, fibronectin, osteonectin and bone sialoprotein gene expression during normal and in vitro -induced odontoblast differentiation. Int J Dev Biol 1994; 38(3): 405-20. PMID: 7848824
  9. Madan AK, Kramer B. Immunolocalization of fibroblast growth factor-2 (FGF-2) in the developing root and supporting structures of the murine tooth. J Mol Histol 2005; 36(3): 171-8. doi: 10.1007/s10735-005-2684-1 PMID: 15900407
  10. Wu J, Huang GT, He W, et al. Basic fibroblast growth factor enhances stemness of human stem cells from the apical papilla. J Endod 2012; 38(5): 614-22. doi: 10.1016/j.joen.2012.01.014 PMID: 22515889
  11. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004; 83(8): 590-5. doi: 10.1177/154405910408300802 PMID: 15271965
  12. Chen S, Gluhak-Heinrich J, Martinez M, et al. Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem 2008; 283(28): 19359-70. doi: 10.1074/jbc.M709492200 PMID: 18424784
  13. Wang W, Dang M, Zhang Z, et al. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater 2016; 36: 63-72. doi: 10.1016/j.actbio.2016.03.015 PMID: 26971664
  14. Nakao K, Itoh M, Tomita Y, Tomooka Y, Tsuji T. FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells. Biochem Biophys Res Commun 2004; 325(3): 1052-9. doi: 10.1016/j.bbrc.2004.10.136 PMID: 15541395
  15. Nowwarote N, Sukarawan W, Pavasant P, Foster BL, Osathanon T. Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth. Stem Cell Res Ther 2018; 9(1): 345. doi: 10.1186/s13287-018-1093-9 PMID: 30526676
  16. Hao J, Yang H, Cao Y, Zhang C, Fan Z. IGFBP5 enhances the dentinogenesis potential of dental pulp stem cells via JNK and ErK signalling pathways. J Oral Rehabil 2020; 47(12): 1557-65. doi: 10.1111/joor.13047 PMID: 32623775
  17. Aksel H, Huang GT. Combined effects of vascular endothelial growth factor and bone morphogenetic protein 2 on Odonto/osteogenic differentiation of human dental pulp stem cells In Vitro. J Endod 2017; 43(6): 930-5. doi: 10.1016/j.joen.2017.01.036 PMID: 28457634
  18. Shamszadeh S, Asgary S, Nosrat A. Regenerative endodontics: A scientometric and bibliometric analysis. J Endod 2019; 45(3): 272-80. doi: 10.1016/j.joen.2018.11.010 PMID: 30803534
  19. Sheykhhasan M, Seifalian A. Plasma-Rich in growth factor and its clinical application. Curr Stem Cell Res Ther 2021; 16(6): 730-44. doi: 10.2174/1574888X16666210120101600 PMID: 33494683
  20. Huang K, Li Q, Li Y, et al. Cartilage tissue regeneration: The roles of cells, stimulating factors and scaffolds. Curr Stem Cell Res Ther 2018; 13(7): 547-67. doi: 10.2174/1574888X12666170608080722 PMID: 28595567
  21. Bhaskar B, Mekala NK, Baadhe RR, Rao PS. Role of signaling pathways in mesenchymal stem cell differentiation. Curr Stem Cell Res Ther 2014; 9(6): 508-12. doi: 10.2174/1574888X09666140812112002 PMID: 25116449
  22. Dave S. Extrinsic factors promoting insulin producing cell-differentiation and insulin expression enhancement-hope for diabetics. Curr Stem Cell Res Ther 2013; 8(6): 471-83. doi: 10.2174/1574888X113089990056 PMID: 23957934
  23. Archer DE, Mafi R, Mafi P, Khan WS. Preclinical studies on biomaterial scaffold use in knee ligament regeneration: A systematic review. Curr Stem Cell Res Ther 2018; 13(8): 691-701. doi: 10.2174/1574888X13666180809093343 PMID: 30091417
  24. Nokhbatolfoghahaei H, Rad MR, Paknejad Z, Ardeshirylajimi A, Khojasteh A. Identification osteogenic signaling pathways following mechanical stimulation: A systematic review. Curr Stem Cell Res Ther 2021; 16. doi: 10.2174/1574888X16666211006105915 PMID: 34615453
  25. Nokhbatolfoghahaei H, Rad MR, Khani MM, Shahriari S, Nadjmi N, Khojasteh A. Application of bioreactors to improve functionality of bone tissue engineering constructs: A systematic review. Curr Stem Cell Res Ther 2017; 12(7): 564-99. doi: 10.2174/1574888X12666170822100105 PMID: 28828969
  26. de Oliveira NK, Miguita L, Salles THC, d’Ávila MA, Marques MM, Deboni MCZ. Can porous polymeric scaffolds be functionalized by stem cells leading to osteogenic differentiation? A systematic review of in vitro studies. J Mater Sci 2018; 53(23): 15757-68. doi: 10.1007/s10853-018-2621-9
  27. Shahravan A, Haghdoost AA, Adl A, Rahimi H, Shadifar F. Effect of smear layer on sealing ability of canal obturation: A systematic review and meta-analysis. J Endod 2007; 33(2): 96-105. doi: 10.1016/j.joen.2006.10.007 PMID: 17258623
  28. Wehner C, Lettner S, Moritz A, Andrukhov O, Rausch-Fan X. Effect of bisphosphonate treatment of titanium surfaces on alkaline phosphatase activity in osteoblasts: A systematic review and meta-analysis. BMC Oral Health 2020; 20(1): 125. doi: 10.1186/s12903-020-01089-4 PMID: 32334598
  29. Caballé-Serrano J, Abdeslam-Mohamed Y, Munar-Frau A, Fujioka-Kobayashi M, Hernández-Alfaro F, Miron R. Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: A systematic review. Arch Oral Biol 2019; 100: 57-68. doi: 10.1016/j.archoralbio.2019.02.006 PMID: 30798032
  30. Sanz JL, Forner L, Almudéver A, Guerrero-Gironés J, Llena C. Viability and stimulation of human stem cells from the apical papilla (hSCAPs) induced by silicate-based materials for their potential use in regenerative endodontics: A systematic review. Materials (Basel) 2020; 13(4): E974. doi: 10.3390/ma13040974 PMID: 32098171
  31. Strauss FJ, Nasirzade J, Kargarpoor Z, Stähli A, Gruber R. Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: A systematic review of in vitro studies. Clin Oral Investig 2020; 24(2): 569-84. doi: 10.1007/s00784-019-03156-9 PMID: 31879804
  32. Sanz JL, Forner L, Llena C, et al. Cytocompatibility and bioactive properties of hydraulic calcium silicate-based cements (HCSCs) on stem cells from human exfoliated deciduous teeth (SHEDs): A systematic review of in vitro studies. J Clin Med 2020; 9(12): E3872. doi: 10.3390/jcm9123872 PMID: 33260782
  33. Moher D, Altman DG, Liberati A, Tetzlaff J. PRISMA statement. Epidemiology 2011; 22(1): 128. doi: 10.1097/EDE.0b013e3181fe7825 PMID: 21150360
  34. Faggion CM Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J Evid Based Dent Pract 2012; 12(4): 182-9. doi: 10.1016/j.jebdp.2012.10.001 PMID: 23177493
  35. Pamies D, Bal-Price A, Simeonov A, et al. Good cell culture practice for stem cells and stem-cell-derived models. Altern Anim Exp 2017; 34(1): 95-132. PMID: 27554434
  36. Xu F, Qiao L, Zhao Y, et al. The potential application of concentrated growth factor in pulp regeneration: An in vitro and in vivo study. Stem Cell Res Ther 2019; 10(1): 134. doi: 10.1186/s13287-019-1247-4 PMID: 31109358
  37. Tian S, Wang J, Dong F, et al. Concentrated growth factor promotes dental pulp cells proliferation and mineralization and facilitates recovery of dental pulp tissue. Med Sci Monit 2019; 25: 10016-28. doi: 10.12659/MSM.919316 PMID: 31877561
  38. Hong S, Li L, Cai W, Jiang B. The potential application of concentrated growth factor in regenerative endodontics. Int Endod J 2019; 52(5): 646-55. doi: 10.1111/iej.13045 PMID: 30471228
  39. Jin R, Song G, Chai J, Gou X, Yuan G, Chen Z. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. J Tissue Eng 2018; 9: 2041731418817505. doi: 10.1177/2041731418817505 PMID: 30622693
  40. Li Z, Liu L, Wang L, Song D. The effects and potential applications of concentrated growth factor in dentin-pulp complex regeneration. Stem Cell Res Ther 2021; 12(1): 357. doi: 10.1186/s13287-021-02446-y PMID: 34147130
  41. Hong S, Chen W, Jiang B. A Comparative evaluation of concentrated growth factor and platelet-rich fibrin on the proliferation, migration, and differentiation of human stem cells of the apical papilla. J Endod 2018; 44(6): 977-83. doi: 10.1016/j.joen.2018.03.006 PMID: 29703620
  42. Li L, Wang Z. PDGF-BB, NGF and BDNF enhance pulp-like tissue regeneration via cell homing. RSC Advances 2016; 6(111): 109519-27. doi: 10.1039/C6RA20290J
  43. Kim YS, Min KS, Jeong DH, Jang JH, Kim HW, Kim EC. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells. J Endod 2010; 36(11): 1824-30. doi: 10.1016/j.joen.2010.08.020 PMID: 20951295
  44. Li R, Peng L, Ren L, Tan H, Ye L. Hepatocyte growth factor exerts promoting functions on murine dental papilla cells. J Endod 2009; 35(3): 382-8. doi: 10.1016/j.joen.2008.11.031 PMID: 19249600
  45. Arany S, Koyota S, Sugiyama T. Nerve growth factor promotes differentiation of odontoblast-like cells. J Cell Biochem 2009; 106(4): 539-45. doi: 10.1002/jcb.22006 PMID: 19170059
  46. Catón J, Bringas P Jr, Zeichner-David M. Establishment and characterization of an immortomouse-derived odontoblast-like cell line to evaluate the effect of insulin-like growth factors on odontoblast differentiation. J Cell Biochem 2007; 100(2): 450-63. doi: 10.1002/jcb.21053 PMID: 16927272
  47. Tsuboi T, Mizutani S, Nakano M, Hirukawa K, Togari A. Fgf-2 regulates enamel and dentine formation in mouse tooth germ. Calcif Tissue Int 2003; 73(5): 496-501. doi: 10.1007/s00223-002-4070-2 PMID: 12958698
  48. Unda FJ, Martín A, Hernandez C, Pérez-Nanclares G, Hilario E, Aréchaga J. FGFs-1 and -2, and TGF beta 1 as inductive signals modulating in vitro odontoblast differentiation. Adv Dent Res 2001; 15(1): 34-7. doi: 10.1177/08959374010150010801 PMID: 12640736
  49. Oyanagi T, Takeshita N, Hara M, et al. Insulin-like growth factor 1 modulates bioengineered tooth morphogenesis. Sci Rep 2019; 9(1): 368. doi: 10.1038/s41598-018-36863-6 PMID: 30675004
  50. Washio A, Kitamura C, Morotomi T, Terashita M, Nishihara T. Possible involvement of smad signaling pathways in induction of odontoblastic properties in KN-3 cells by bone morphogenetic protein-2: A growth factor to induce dentin regeneration. Int J Dent 2012; 2012: 258469. doi: 10.1155/2012/258469 PMID: 22505896
  51. Zhang Y, Zhang H, Yuan G, Yang G. Effects of transforming growth factor-β1 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochem Biophys Res Commun 2021; 545: 105-11. doi: 10.1016/j.bbrc.2021.01.076 PMID: 33548622
  52. Sagomonyants K, Kalajzic I, Maye P, Mina M. Enhanced dentinogenesis of pulp progenitors by early exposure to FGF2. J Dent Res 2015; 94(11): 1582-90. doi: 10.1177/0022034515599768 PMID: 26276371
  53. Iohara K, Imabayashi K, Ishizaka R, et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A 2011; 17(15-16): 1911-20. doi: 10.1089/ten.tea.2010.0615 PMID: 21417716
  54. Sagomonyants K, Mina M. Stage-specific effects of fibroblast growth factor 2 on the differentiation of dental pulp cells. Cells Tissues Organs 2014; 199(5-6): 311-28. doi: 10.1159/000371343 PMID: 25823776
  55. Melin M, Joffre-Romeas A, Farges JC, Couble ML, Magloire H, Bleicher F. Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res 2000; 79(9): 1689-96. doi: 10.1177/00220345000790090901 PMID: 11023265
  56. Mullane EM, Dong Z, Sedgley CM, et al. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 2008; 87(12): 1144-8. doi: 10.1177/154405910808701204 PMID: 19029083
  57. Shen Z, Tsao H, LaRue S, et al. Vascular endothelial growth factor and/or nerve growth factor treatment induces expression of dentinogenic, neuronal, and healing markers in stem cells of the apical papilla. J Endod 2021; 47(6): 924-31. doi: 10.1016/j.joen.2021.02.011 PMID: 33652017
  58. Iohara K, Murakami M, Takeuchi N, et al. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med 2013; 2(10): 818. doi: 10.5966/sctm.2012-0132erratum PMID: 28945010
  59. Pääkkönen V, Vuoristo J, Salo T, Tjäderhane L. Effects of TGF-beta 1 on interleukin profile of human dental pulp and odontoblasts. Cytokine 2007; 40(1): 44-51. doi: 10.1016/j.cyto.2007.08.003 PMID: 17889552
  60. Yan L, Sun S, Qu L. Insulin-like growth factor-1 promotes the proliferation and odontoblastic differentiation of human dental pulp cells under high glucose conditions. Int J Mol Med 2017; 40(4): 1253-60. doi: 10.3892/ijmm.2017.3117 PMID: 28902344
  61. Liu L, Peng Z, Xu Z, Huang H, Wei X. Mouse embryonic fibroblast (MEF)/BMP4-conditioned medium enhanced multipotency of human dental pulp cells. J Mol Histol 2018; 49(1): 17-26. doi: 10.1007/s10735-017-9743-2 PMID: 29214501
  62. Srisuwan T, Wattanapakkavong K. Direct effect of transforming growth factor-beta 1 (TGF-β1) on human apical papilla cell proliferation and mineralisation. Aust Endod J 2021; aej: 12572. doi: 10.1111/aej.12572 PMID: 34596309
  63. Shimabukuro Y, Ueda M, Ozasa M, et al. Fibroblast growth factor-2 regulates the cell function of human dental pulp cells. J Endod 2009; 35(11): 1529-35. doi: 10.1016/j.joen.2009.08.010 PMID: 19840642
  64. He H, Yu J, Liu Y, et al. Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 2008; 32(7): 827-34. doi: 10.1016/j.cellbi.2008.03.013 PMID: 18442933
  65. Chang YC, Chang MC, Chen YJ, et al. Basic fibroblast growth factor regulates gene and protein expression related to proliferation, differentiation, and matrix production of human dental pulp cells. J Endod 2017; 43(6): 936-42. doi: 10.1016/j.joen.2017.01.024 PMID: 28416318
  66. Kang KJ, Ryu CJ, Jang YJ. Identification of dentinogenic cell-specific surface antigens in odontoblast-like cells derived from adult dental pulp. Stem Cell Res Ther 2019; 10(1): 128. doi: 10.1186/s13287-019-1232-y PMID: 31029165
  67. Wu S, Zhou Y, Yu Y, et al. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int 2019; 2019: 1515040. doi: 10.1155/2019/1515040 PMID: 31949434
  68. Jiang L, Ayre WN, Melling GE, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells. J Dent 2020; 103: 103501. doi: 10.1016/j.jdent.2020.103501 PMID: 33068710
  69. Atalayin C, Tezel H, Dagci T, Yavasoglu NU, Oktem G. Medium modification with bone morphogenetic protein 2 addition for odontogenic differentiation. Braz Oral Res 2016; 30(1): 30. doi: 10.1590/1807-3107BOR-2016.vol30.0020 PMID: 26981753
  70. Tabatabaei FS, Torshabi M. Effects of non-collagenous proteins, TGF-β1, and PDGF-BB on viability and proliferation of dental pulp stem cells. J Oral Maxillofac Res 2016; 7(1): e4. doi: 10.5037/jomr.2016.7104 PMID: 27099698
  71. Lv T, Wu Y, Mu C, et al. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways. Arch Oral Biol 2016; 72: 116-23. doi: 10.1016/j.archoralbio.2016.08.011 PMID: 27573439
  72. Chang MC, Lin LD, Tseng HC, et al. Growth and differentiation factor-5 regulates the growth and differentiation of human dental pulp cells. J Endod 2013; 39(10): 1272-7. doi: 10.1016/j.joen.2013.06.003 PMID: 24041390
  73. Li Y, Lü X, Sun X, Bai S, Li S, Shi J. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Arch Oral Biol 2011; 56(11): 1221-9. doi: 10.1016/j.archoralbio.2011.05.002 PMID: 21641578
  74. Nie X, Tian W, Zhang Y, et al. Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int 2006; 30(4): 295-300. doi: 10.1016/j.cellbi.2005.12.001 PMID: 16458025
  75. Luisi SB, Barbachan JJ, Chies JA, Filho MS. Behavior of human dental pulp cells exposed to transforming growth factor-beta1 and acidic fibroblast growth factor in culture. J Endod 2007; 33(7): 833-5. doi: 10.1016/j.joen.2007.04.002 PMID: 17804323
  76. Yokose S, Kadokura H, Tajima N, et al. Platelet-derived growth factor exerts disparate effects on odontoblast differentiation depending on the dimers in rat dental pulp cells. Cell Tissue Res 2004; 315(3): 375-84. doi: 10.1007/s00441-003-0839-5 PMID: 14740293
  77. Chang HH, Chang MC, Wu IH, et al. Role of ALK5/Smad2/3 and MEK1/ERK Signaling in transforming growth factor beta 1-modulated growth, collagen turnover, and differentiation of stem cells from apical papilla of human tooth. J Endod 2015; 41(8): 1272-80. doi: 10.1016/j.joen.2015.03.022 PMID: 26001858
  78. Khoroushi M, Foroughi MR, Karbasi S, Hashemibeni B, Khademi AA. Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. Mater Sci Eng C 2018; 89: 128-39. doi: 10.1016/j.msec.2018.03.028 PMID: 29752081
  79. Cagidiaco MC, Radovic I, Simonetti M, Tay F, Ferrari M. Clinical performance of fiber post restorations in endodontically treated teeth: 2-year results. Int J Prosthodont 2007; 20(3): 293-8. PMID: 17580463
  80. Choi MR, Kim HY, Park J-Y, et al. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci Lett 2010; 472(2): 94-8. doi: 10.1016/j.neulet.2010.01.054 PMID: 20117176
  81. Hafner M, Niepel M, Chung M, Sorger PK. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat Methods 2016; 13(6): 521-7. doi: 10.1038/nmeth.3853 PMID: 27135972
  82. Ashe HL, Mannervik M, Levine M. Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 2000; 127(15): 3305-12. doi: 10.1242/dev.127.15.3305 PMID: 10887086
  83. Kim JH, Lee MC, Seong SC, Park KH, Lee S. Enhanced proliferation and chondrogenic differentiation of human synovium-derived stem cells expanded with basic fibroblast growth factor. Tissue Eng Part A 2011; 17(7-8): 991-1002. doi: 10.1089/ten.tea.2010.0277 PMID: 21091327
  84. Nakashima M. The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch Oral Biol 1992; 37(3): 231-6. doi: 10.1016/0003-9969(92)90093-N PMID: 1375023
  85. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 2005; 203(2): 398-409. doi: 10.1002/jcp.20238 PMID: 15521064
  86. Xian CJ, Foster BK. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 2006; 1(2): 213-29. doi: 10.2174/157488806776956904 PMID: 18220868
  87. Lee TH, Kim WT, Ryu CJ, Jang YJ. Optimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblasts. Biochem Cell Biol 2015; 93(4): 298-305. doi: 10.1139/bcb-2014-0140 PMID: 25789782
  88. Takayama S, Yoshida J, Hirano H, Okada H, Murakami S. Effects of basic fibroblast growth factor on human gingival epithelial cells. J Periodontol 2002; 73(12): 1467-73. doi: 10.1902/jop.2002.73.12.1467 PMID: 12546097
  89. Chan CP, Lan WH, Chang MC, et al. Effects of TGF-beta s on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol 2005; 50(5): 469-79. doi: 10.1016/j.archoralbio.2004.10.005 PMID: 15777529
  90. Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000; 103(2): 295-309. doi: 10.1016/S0092-8674(00)00121-5 PMID: 11057902
  91. Miyazaki Y, Tsukazaki T, Hirota Y, et al. Dexamethasone inhibition of TGF beta-induced cell growth and type II collagen mRNA expression through ERK-integrated AP-1 activity in cultured rat articular chondrocytes. Osteoarthritis Cartilage 2000; 8(5): 378-85. doi: 10.1053/joca.1999.0313 PMID: 10966845
  92. Ching HS, Luddin N, Rahman IA, Ponnuraj KT. Expression of odontogenic and osteogenic markers in DPSCs and SHED: A review. Curr Stem Cell Res Ther 2017; 12(1): 71-9. doi: 10.2174/1574888X11666160815095733 PMID: 27527527
  93. Mekala NK, Baadhe RR, Parcha SR. Study on osteoblast like behavior of umbilical cord blood cells on various combinations of PLGA scaffolds prepared by salt fusion. Curr Stem Cell Res Ther 2013; 8(3): 253-9. doi: 10.2174/1574888X11308030010 PMID: 23317433
  94. Kim HP, Ji YH, Rhee SC, Dhong ES, Park SH, Yoon ES. Enhancement of bone regeneration using osteogenic-induced adipose-derived stem cells combined with demineralized bone matrix in a rat critically-sized calvarial defect model. Curr Stem Cell Res Ther 2012; 7(3): 165-72. doi: 10.2174/157488812799859847 PMID: 22329583
  95. Shui C, Scutt A. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J Bone Miner Res 2001; 16(4): 731-41. doi: 10.1359/jbmr.2001.16.4.731 PMID: 11316001
  96. Sloan AJ, Rutherford RB, Smith AJ. Stimulation of the rat dentine-pulp complex by bone morphogenetic protein-7 in vitro. Arch Oral Biol 2000; 45(2): 173-7. doi: 10.1016/S0003-9969(99)00131-4 PMID: 10716622
  97. Lallier TE, Spencer A, Fowler MM. Transcript profiling of periodontal fibroblasts and osteoblasts. J Periodontol 2005; 76(7): 1044-55. doi: 10.1902/jop.2005.76.7.1044 PMID: 16018745
  98. Javid B, Panahandeh N, Torabzadeh H, Nazarian H, Parhizkar A, Asgary S. Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin. Restor Dent Endod 2019; 45(1): e3. doi: 10.5395/rde.2020.45.e3 PMID: 32110533
  99. Martín A, Unda FJ, Bègue-Kirn C, Ruch JV, Aréchaga J. Effects of aFGF, bFGF, TGFbeta1 and IGF-I on odontoblast differentiation in vitro. Eur J Oral Sci 1998; 106(S1) (Suppl. 1): 117-21. doi: 10.1111/j.1600-0722.1998.tb02162.x PMID: 9541212
  100. Li CY, Prochazka J, Goodwin AF, Klein OD. Fibroblast growth factor signaling in mammalian tooth development. Odontology 2014; 102(1): 1-13. doi: 10.1007/s10266-013-0142-1 PMID: 24343791
  101. Guo W, Lin X, Zhang R, et al. Spatiotemporal expression patterns of critical genes involved in FGF signaling during morphogenesis and odontogenesis of deciduous molars in miniature pigs. Int J Med Sci 2022; 19(1): 132-41. doi: 10.7150/ijms.61798 PMID: 34975307
  102. Quarto N, Longaker MT. FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential state. Tissue Eng 2006; 12(6): 1405-18. doi: 10.1089/ten.2006.12.1405 PMID: 16846339

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers