Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold?


Цитировать

Полный текст

Аннотация

Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by substantia nigra dopamine cell death and a varied clinical picture that affects older people. Although more than two centuries have passed since the earliest attempts to find a cure for PD, it remains an unresolved problem. With this in mind, cell replacement therapy is a new strategy for treating PD. This novel approach aims to replace degenerated dopaminergic (DAergic) neurons with new ones or provide a new source of cells that can differentiate into DAergic neurons. Induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs) are among the cells considered for transplantation therapies. Recently disease-modifying strategies like cell replacement therapies combined with other therapeutic approaches, such as utilizing natural compounds or biomaterials, are proposed to modify the underlying neurodegeneration. In the present review, we discuss the current advances in cell replacement therapy for PD and summarize the existing experimental and clinical evidence supporting this approach.

Об авторах

Ava Nasrolahi

Infectious Ophthalmologic Research Cente, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences

Email: info@benthamscience.net

Zahra Shabani

Center for Cerebrovascular Research, University of California

Email: info@benthamscience.net

Saeed Sadigh-Eteghad

Neurosciences Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Hanieh Salehi-Pourmehr

Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Javad Mahmoudi

Neurosciences Research Center, Tabriz University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem 2016; 139 (Suppl. 1): 318-24. doi: 10.1111/jnc.13691 PMID: 27401947
  2. Nasrolahi A. Immune system and new avenues in Parkinson’s disease research and treatment. Rev Neurosci 2019; 30(7): 709-27.
  3. Nasrolahi A, Mahmoudi J, Noori-Zadeh A, Haghani K, Bakhtiyari S, Darabi S. Shared pathological mechanisms between diabetes mellitus and neurodegenerative diseases. Curr Pharmacol Rep 2019; 5(4): 219-31. doi: 10.1007/s40495-019-00191-8
  4. Antony PMA, Diederich NJ, Krüger R, Balling R. The hallmarks of Parkinson’s disease. FEBS J 2013; 280(23): 5981-93. doi: 10.1111/febs.12335 PMID: 23663200
  5. Sharifi H, Mohajjel Nayebia A, Farajnia S. The effect of chronic administration of buspirone on 6-hydroxydopamine-induced catalepsy in rats. Adv Pharm Bull 2012; 2(1): 127-31. PMID: 24312782
  6. Nasrolahi A, Mahmoudi J, Akbarzadeh A, et al. Neurotrophic factors hold promise for the future of Parkinson’s disease treatment: is there a light at the end of the tunnel? Rev Neurosci 2018; 29(5): 475-89. doi: 10.1515/revneuro-2017-0040 PMID: 29305570
  7. Bastide MF, Meissner WG, Picconi B, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 2015; 132: 96-168. doi: 10.1016/j.pneurobio.2015.07.002 PMID: 26209473
  8. Beudel M, Brown P. Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord 2016; 22 (Suppl. 1): S123-6. doi: 10.1016/j.parkreldis.2015.09.028 PMID: 26411502
  9. Guerra A, Suppa A, D’Onofrio V, et al. Abnormal cortical facilitation and L-dopa-induced dyskinesia in Parkinson’s disease. Brain Stimul 2019; 12(6): 1517-25. doi: 10.1016/j.brs.2019.06.012 PMID: 31217080
  10. Bartus RT, Weinberg MS, Samulski RJ. Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol Ther 2014; 22(3): 487-97. doi: 10.1038/mt.2013.281 PMID: 24356252
  11. Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006; 59(3): 459-66. doi: 10.1002/ana.20737 PMID: 16429411
  12. George S, Brundin P. Immunotherapy in Parkinson’s disease: micromanaging alpha-synuclein aggregation. J Parkinsons Dis 2015; 5(3): 413-24. doi: 10.3233/JPD-150630 PMID: 26406122
  13. Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 2009; 30(5): 260-7. doi: 10.1016/j.tips.2009.03.001 PMID: 19362379
  14. Bjorklund A. Cell replacement strategies for neurodegenerative disorders. In: Derek J, Chadwick J, Jammie AG, Eds. Novartis Found Symp. Wiley Online Library 2000. doi: 10.1002/0470870834.ch2
  15. Napoli E, Borlongan CV. Stem cell recipes of bone marrow and fish: just what the stroke doctors ordered. Stem Cell Rev 2017; 13(2): 192-7. doi: 10.1007/s12015-016-9716-y PMID: 28064388
  16. Freeman TB, Cicchetti F, Hauser RA, et al. Transplanted fetal striatum in Huntington’s disease: Phenotypic development and lack of pathology. Proc Natl Acad Sci USA 2000; 97(25): 13877-82. doi: 10.1073/pnas.97.25.13877 PMID: 11106399
  17. Lindvall O, Rehncrona S, Brundin P, et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol 1989; 46(6): 615-31. doi: 10.1001/archneur.1989.00520420033021 PMID: 2786405
  18. Kordower JH, Freeman TB, Snow BJ, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995; 332(17): 1118-24. doi: 10.1056/NEJM199504273321702 PMID: 7700284
  19. Lindvall O, Brundin P, Widner H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990; 247(4942): 574-7. doi: 10.1126/science.2105529 PMID: 2105529
  20. Sancho-Bielsa FJ. Parkinson’s disease: Present and future of cell therapy. Neurology Perspectives 2022; 2: S58-68. doi: 10.1016/j.neurop.2021.07.006
  21. Liao J, Cui C, Chen S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 2009; 4(1): 11-5. doi: 10.1016/j.stem.2008.11.013 PMID: 19097959
  22. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell 2009; 4(6): 487-92. doi: 10.1016/j.stem.2009.05.015 PMID: 19497275
  23. Pollard SM, Conti L, Sun Y, Goffredo D, Smith A. Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb Cortex 2006; 16 (Suppl. 1): i112-20. doi: 10.1093/cercor/bhj167 PMID: 16766697
  24. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41-9. doi: 10.1038/nature00870 PMID: 12077603
  25. Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16(6): 931-52. doi: 10.1089/scd.2007.0036 PMID: 18047393
  26. Zhang Y, Li C, Jiang X, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 2004; 32(7): 657-64. doi: 10.1016/j.exphem.2004.04.001 PMID: 15246162
  27. Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinson’s disease. BMC Med 2012; 10(1): 1. doi: 10.1186/1741-7015-10-1 PMID: 22216957
  28. Grealish S, Diguet E, Kirkeby A, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 2014; 15(5): 653-65.
  29. Park S, Lee KS, Lee YJ, et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett 2004; 359(1-2): 99-103. doi: 10.1016/j.neulet.2004.01.073 PMID: 15050721
  30. Cho MS, Lee YE, Kim JY, et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2008; 105(9): 3392-7. doi: 10.1073/pnas.0712359105 PMID: 18305158
  31. Takagi Y, Takahashi J, Saiki H, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005; 115(1): 102-9. doi: 10.1172/JCI21137 PMID: 15630449
  32. Kim JH, Auerbach JM, Rodríguez-Gómez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002; 418(6893): 50-6. doi: 10.1038/nature00900 PMID: 12077607
  33. Ben-Hur T, Idelson M, Khaner H, et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 2004; 22(7): 1246-55. doi: 10.1634/stemcells.2004-0094 PMID: 15579643
  34. Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008; 26(1): 55-63. doi: 10.1634/stemcells.2007-0494 PMID: 17951220
  35. Brederlau A, Correia AS, Anisimov SV, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 2006; 24(6): 1433-40. doi: 10.1634/stemcells.2005-0393 PMID: 16556709
  36. Hedlund E, Pruszak J, Lardaro T, et al. Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells 2008; 26(6): 1526-36. doi: 10.1634/stemcells.2007-0996 PMID: 18388307
  37. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344(10): 710-9. doi: 10.1056/NEJM200103083441002 PMID: 11236774
  38. Shroff G, Hopf-Seidel P. Use of human embryonic stem cells in the treatment of Parkinson’s disease: a case report. Int J Emerg Ment Health 2015; 17(3): 661-3. PMID: 26568701
  39. Kirkeby A, Nolbrant S, Tiklova K, et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 2017; 20(1): 135-48. doi: 10.1016/j.stem.2016.09.004 PMID: 28094017
  40. Piao J, Zabierowski S, Dubose BN, et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 2021; 28(2): 217-229.e7. doi: 10.1016/j.stem.2021.01.004 PMID: 33545080
  41. Bindhya S, Sidhanth C, Shabna A, Krishnapriya S, Garg M, Ganesan TS. Induced pluripotent stem cells: A new strategy to model human cancer. Int J Biochem Cell Biol 2019; 107: 62-8. doi: 10.1016/j.biocel.2018.12.008 PMID: 30557622
  42. Park I-H. Disease-specific induced pluripotent stem cells. Cell 2008; 134(5): 877-6. doi: 10.1016/j.cell.2008.07.041
  43. Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136(5): 964-77. doi: 10.1016/j.cell.2009.02.013 PMID: 19269371
  44. Wernig M, Zhao JP, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 2008; 105(15): 5856-61. doi: 10.1073/pnas.0801677105 PMID: 18391196
  45. Hargus G, Cooper O, Deleidi M, et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA 2010; 107(36): 15921-6. doi: 10.1073/pnas.1010209107 PMID: 20798034
  46. Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 2010; 19(7): 1017-23. doi: 10.1089/scd.2009.0319 PMID: 19824823
  47. Zhang Y, Ge M, Hao Q, Dong B. Induced pluripotent stem cells in rat models of Parkinson’s disease: A systematic review and meta analysis. Biomed Rep 2018; 8(3): 289-96. doi: 10.3892/br.2018.1049 PMID: 29564126
  48. Swistowski A, Peng J, Liu Q, et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 2010; 28(10): 1893-904. doi: 10.1002/stem.499 PMID: 20715183
  49. Emborg ME, Liu Y, Xi J, et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 2013; 3(3): 646-50. doi: 10.1016/j.celrep.2013.02.016 PMID: 23499447
  50. Hallett PJ, Deleidi M, Astradsson A, et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 2015; 16(3): 269-74. doi: 10.1016/j.stem.2015.01.018 PMID: 25732245
  51. Kikuchi T, Morizane A, Doi D, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 2017; 548(7669): 592-6. doi: 10.1038/nature23664 PMID: 28858313
  52. Tao Y, Vermilyea SC, Zammit M, et al. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nat Med 2021; 27(4): 632-9. doi: 10.1038/s41591-021-01257-1 PMID: 33649496
  53. Song B, Cha Y, Ko S, et al. Human autologous iPSC–derived dopaminergic progenitors restore motor function in Parkinson’s disease models. J Clin Invest 2020; 130(2): 904-20. doi: 10.1172/JCI130767 PMID: 31714896
  54. Schweitzer JS, Song B, Herrington TM, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N Engl J Med 2020; 382(20): 1926-32. doi: 10.1056/NEJMoa1915872 PMID: 32402162
  55. Cyranoski D. Reprogrammed’stem cells implanted into patient with Parkinson’s disease. Nature 2018; 563: 1-2.
  56. Magotani H. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat Commun 2020; 11(1): 1-14. PMID: 31911652
  57. Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97(23): 12846-51. doi: 10.1073/pnas.97.23.12846 PMID: 11070094
  58. Flax JD, Aurora S, Yang C, et al. Engraftable human neural stem cells respond to development cues, replace neurons, and express foreign genes. Nat Biotechnol 1998; 16(11): 1033-9. doi: 10.1038/3473 PMID: 9831031
  59. Gage FH. Mammalian neural stem cells. Science 2000; 287(5457): 1433-8. doi: 10.1126/science.287.5457.1433 PMID: 10688783
  60. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002; 110(4): 429-41. doi: 10.1016/S0092-8674(02)00862-0 PMID: 12202033
  61. Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 2017; 106: 94-100. doi: 10.1016/j.neuint.2017.02.006 PMID: 28219641
  62. Goldberg NRS, Caesar J, Park A, et al. Neural stem cells rescue cognitive and motor dysfunction in a transgenic model of dementia with lewy bodies through a BDNF-dependent mechanism. Stem Cell Reports 2015; 5(5): 791-804. doi: 10.1016/j.stemcr.2015.09.008 PMID: 26489892
  63. Redmond DE Jr, Bjugstad KB, Teng YD, et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci USA 2007; 104(29): 12175-80. doi: 10.1073/pnas.0704091104 PMID: 17586681
  64. Choi DH, Kim JH, Kim S, Kang K, Han D, Lee J. Therapeutic potential of induced neural stem cells for Parkinson’s disease. Int J Mol Sci 2017; 18(1): 224. doi: 10.3390/ijms18010224 PMID: 28117752
  65. Bai H, Suzuki Y, Noda T, et al. Dissemination and proliferation of neural stem cells on the spinal cord by injection into the fourth ventricle of the rat: a method for cell transplantation. J Neurosci Methods 2003; 124(2): 181-7. doi: 10.1016/S0165-0270(03)00007-4 PMID: 12706848
  66. Zuo F, Xiong F, Wang X, et al. Intrastriatal transplantation of human neural stem cells restores the impaired subventricular zone in Parkinsonian mice. Stem Cells 2017; 35(6): 1519-31. doi: 10.1002/stem.2616 PMID: 28328168
  67. Nasrolahi A, Mahmoudi J, Karimipour M, et al. Effect of cerebral dopamine neurotrophic factor on endogenous neural progenitor cell migration in a rat model of Parkinson’s disease. EXCLI J 2019; 18: 139-53. PMID: 30956647
  68. L’Episcopo F, Tirolo C, Peruzzotti-Jametti L, et al. Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via Wnt/β-catenin signaling. Stem Cells 2018; 36(8): 1179-97. doi: 10.1002/stem.2827 PMID: 29575325
  69. Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113(12): 1701-10. doi: 10.1172/JCI200420935 PMID: 15199405
  70. Romieu-Mourez R, François M, Boivin MN, Stagg J, Galipeau J. Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-γ, TGF-β, and cell density. J Immunol 2007; 179(3): 1549-58. doi: 10.4049/jimmunol.179.3.1549 PMID: 17641021
  71. Chung TH, Hsu SC, Wu SH, et al. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale 2018; 10(6): 2998-3007. doi: 10.1039/C7NR06976F PMID: 29372743
  72. Li Q, Wang Y, Deng Z. Pre-conditioned mesenchymal stem cells: a better way for cell-based therapy. Stem Cell Res Ther 2013; 4(3): 63. doi: 10.1186/scrt213 PMID: 23739590
  73. Liu Z, Cheung HH. Stem cell-based therapies for Parkinson disease. Int J Mol Sci 2020; 21(21): 8060. doi: 10.3390/ijms21218060 PMID: 33137927
  74. Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci Lett 2001; 316(2): 67-70. doi: 10.1016/S0304-3940(01)02384-9 PMID: 11742717
  75. Venkataramana NK, Kumar SKV, Balaraju S, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 2010; 155(2): 62-70. doi: 10.1016/j.trsl.2009.07.006 PMID: 20129486
  76. Politis M. Optimizing functional imaging protocols for assessing the outcome of fetal cell transplantation in Parkinson’s disease. BMC Med 2011; 9(1): 50. doi: 10.1186/1741-7015-9-50 PMID: 21569273
  77. Cova L, Armentero MT, Zennaro E, et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res 2010; 1311: 12-27. doi: 10.1016/j.brainres.2009.11.041 PMID: 19945443
  78. Park HJ, Shin JY, Lee BR, Kim HO, Lee PH. Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model. Cell Transplant 2012; 21(8): 1629-40. doi: 10.3727/096368912X640556 PMID: 22546197
  79. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886. doi: 10.3390/cells8080886 PMID: 31412678
  80. Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC. Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease. J Neurosci Res 2010; 88(12): 22435. doi: 10.1002/jnr.22435 PMID: 20544825
  81. Gao F, Chiu SM, Motan D A L, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 2016; 7(1): e2062-. doi: 10.1038/cddis.2015.327 PMID: 26794657
  82. Park HJ, Oh SH, Kim HN, Jung YJ, Lee PH. Mesenchymal stem cells enhance α-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathol 2016; 132(5): 685-701. doi: 10.1007/s00401-016-1605-6 PMID: 27497943
  83. Park HJ, Shin JY, Kim HN, Oh SH, Lee PH. Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiol Aging 2014; 35(8): 1920-8. doi: 10.1016/j.neurobiolaging.2014.01.028 PMID: 24629674
  84. Oh SH, Lee SC, Kim DY, et al. Mesenchymal stem cells stabilize axonal transports for autophagic clearance of α-synuclein in parkinsonian models. Stem Cells 2017; 35(8): 1934-47. doi: 10.1002/stem.2650 PMID: 28580639
  85. Tomaskovic-Crook E, Crook JM. Human embryonic stem cell therapies for neurodegenerative diseases. CNS Neurol Disord Drug Targets 2011; 10(4): 440-8. doi: 10.2174/187152711795564001
  86. Finkel Z, Esteban F, Rodriguez B, Fu T, Ai X, Cai L. Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease. Cells 2021; 10(8): 2045. doi: 10.3390/cells10082045 PMID: 34440814
  87. Studer L, Tabar V, McKay R. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1998; 1(4): 290-5. doi: 10.1038/1105 PMID: 10195162
  88. Vatsa P, Negi R, Ansari UA, Khanna VK, Pant AB. Insights of extracellular vesicles of mesenchymal stem cells: a prospective cell-free regenerative medicine for neurodegenerative disorders. Mol Neurobiol 2022; 59(1): 459-74. doi: 10.1007/s12035-021-02603-7 PMID: 34714469
  89. Kikuchi T, Morizane A, Doi D, et al. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J Parkinsons Dis 2011; 1(4): 395-412. doi: 10.3233/JPD-2011-11070 PMID: 23933658
  90. Teixeira F, Salgado A. Mesenchymal stem cells secretome: current trends and future challenges. Neural Regen Res 2020; 15(1): 75-7. doi: 10.4103/1673-5374.264455 PMID: 31535654
  91. Teixeira FG, Carvalho MM, Panchalingam KM, et al. Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson’s disease. Stem Cells Transl Med 2017; 6(2): 634-46. doi: 10.5966/sctm.2016-0071 PMID: 28191785
  92. Martins LF, Costa RO, Pedro JR, et al. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 2017; 7(1): 4153. doi: 10.1038/s41598-017-03592-1 PMID: 28646200
  93. Teixeira FG, Vilaça-Faria H, Domingues AV, Campos J, Salgado AJ. Preclinical comparison of stem cells secretome and levodopa application in a 6-hydroxydopamine rat model of Parkinson’s disease. Cells 2020; 9(2): 315. doi: 10.3390/cells9020315 PMID: 32012897
  94. Mendes-Pinheiro B, Anjo SI, Manadas B, et al. Bone marrow mesenchymal stem cells’ secretome exerts neuroprotective effects in a Parkinson’s disease rat model. Front Bioeng Biotechnol 2019; 7: 294. doi: 10.3389/fbioe.2019.00294 PMID: 31737616
  95. Willis CM, Nicaise AM, Hamel R, Pappa V, Peruzzotti-Jametti L, Pluchino S. Harnessing the neural stem cell secretome for regenerative neuroimmunology. Front Cell Neurosci 2020; 14: 590960. doi: 10.3389/fncel.2020.590960 PMID: 33250716
  96. Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729: 146615. doi: 10.1016/j.brainres.2019.146615 PMID: 31863730
  97. Mendes-Pinheiro B, Teixeira FG, Anjo SI, Manadas B, Behie LA, Salgado AJ. Secretome of undifferentiated neural progenitor cells induces histological and motor improvements in a rat model of Parkinson’s disease. Stem Cells Transl Med 2018; 7(11): 829-38. doi: 10.1002/sctm.18-0009 PMID: 30238668
  98. Vilaça-Faria H, Marote A, Lages I, et al. Fractionating stem cells secretome for Parkinson’s disease modeling: Is it the whole better than the sum of its parts? Biochimie 2021; 189: 87-98. doi: 10.1016/j.biochi.2021.06.008 PMID: 34182001
  99. Yu H, Sun T, An J, et al. Potential roles of exosomes in Parkinson’s disease: from pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol 2020; 8: 86. doi: 10.3389/fcell.2020.00086 PMID: 32154247
  100. Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis 2020; 11(4): 288. doi: 10.1038/s41419-020-2473-5 PMID: 32341347
  101. Wei Y. Future of exosomes and mesenchymal stem cell-derived exosomes in the diagnosis and treatment of Parkinson’s disease. Chinese J Tissue Eng Res 2022; 26(25): 4076.
  102. Newland B, Newland H, Werner C, Rosser A, Wang W. Prospects for polymer therapeutics in Parkinson’s disease and other neurodegenerative disorders. Prog Polym Sci 2015; 44: 79-112. doi: 10.1016/j.progpolymsci.2014.12.002
  103. Shabani Z, Ghadiri T, Karimipour M, et al. Modulatory properties of extracellular matrix glycosaminoglycans and proteoglycans on neural stem cells behavior: Highlights on regenerative potential and bioactivity. Int J Biol Macromol 2021; 171: 366-81. doi: 10.1016/j.ijbiomac.2021.01.006 PMID: 33422514
  104. Harris JP. Emerging regenerative medicine and tissue engineering strategies for Parkinson’s disease. Parkinsons Dis 2020; 6(1): 1-14.
  105. Kim H, Cooke MJ, Shoichet MS. Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotechnol 2012; 30(1): 55-63. doi: 10.1016/j.tibtech.2011.07.002 PMID: 21831464
  106. George PM, Lyckman AW, LaVan DA, et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005; 26(17): 3511-9. doi: 10.1016/j.biomaterials.2004.09.037 PMID: 15621241
  107. Bliss TM, Andres RH, Steinberg GK. Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 2010; 37(2): 275-83. doi: 10.1016/j.nbd.2009.10.003 PMID: 19822211
  108. Nguyen LH, Gao M, Lin J, Wu W, Wang J, Chew SY. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci Rep 2017; 7(1): 42212. doi: 10.1038/srep42212 PMID: 28169354
  109. Alaribe FN, Manoto SL, Motaung SCKM. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia (Bratisl) 2016; 71(4): 353-66. doi: 10.1515/biolog-2016-0056
  110. Doblado LR, Martínez-Ramos C, Pradas MM. Biomaterials for neural tissue engineering. Front Nanotechnol 2021; 3: 643507. doi: 10.3389/fnano.2021.643507
  111. Moayeri A, Darvishi M, Amraei M. Homing of super paramagnetic iron oxide nanoparticles (spions) labeled adipose-derived stem cells by magnetic attraction in a rat model of Parkinson’s disease. Int J Nanomedicine 2020; 15: 1297-308. doi: 10.2147/IJN.S238266 PMID: 32161459
  112. Bi C, Wang A, Chu Y, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomedicine 2016; 11: 6547-59. doi: 10.2147/IJN.S120939 PMID: 27994458
  113. Wang TY, Bruggeman KF, Kauhausen JA, Rodriguez AL, Nisbet DR, Parish CL. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson’s disease. Biomaterials 2016; 74: 89-98. doi: 10.1016/j.biomaterials.2015.09.039 PMID: 26454047
  114. Xue J, Liu Y, Darabi MA, et al. An injectable conductive Gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for Parkinson’s disease treatment. Mater Sci Eng C 2019; 100: 584-97. doi: 10.1016/j.msec.2019.03.024 PMID: 30948095
  115. Li J, Darabi M, Gu J, et al. A drug delivery hydrogel system based on activin B for Parkinson’s disease. Biomaterials 2016; 102: 72-86. doi: 10.1016/j.biomaterials.2016.06.016 PMID: 27322960
  116. Saylam E, Akkaya Y, Ilhan E, et al. Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson’s Disease. Appl Sci (Basel) 2021; 11(22): 10727. doi: 10.3390/app112210727
  117. Foidl BM, Ucar B, Schwarz A, Rebelo AL, Pandit A, Humpel C. Nerve growth factor released from collagen scaffolds protects axotomized cholinergic neurons of the basal nucleus of Meynert in organotypic brain slices. J Neurosci Methods 2018; 295: 77-86. doi: 10.1016/j.jneumeth.2017.12.003 PMID: 29221639
  118. Chemmarappally JM, Pegram HCN, Abeywickrama N, et al. A co-culture nanofibre scaffold model of neural cell degeneration in relevance to Parkinson’s disease. Sci Rep 2020; 10(1): 2767. doi: 10.1038/s41598-020-59310-x PMID: 32066745
  119. Politis M, Niccolini F. Serotonin in Parkinson’s disease. Behav Brain Res 2015; 277: 136-45. doi: 10.1016/j.bbr.2014.07.037 PMID: 25086269
  120. Surmeier DJ, Obeso JA, Halliday GM. Parkinson’s disease is not simply a prion disorder. J Neurosci 2017; 37(41): 9799-807. doi: 10.1523/JNEUROSCI.1787-16.2017 PMID: 29021297
  121. Politis M. Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci Transl Med 2012; 4(128): 128ra41. doi: 10.1126/scitranslmed.3003391
  122. Katsukawa M, Nakajima Y, Fukumoto A, Doi D, Takahashi J. Fail-safe therapy by gamma-ray irradiation against tumor formation by human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev 2016; 25(11): 815-25. doi: 10.1089/scd.2015.0394 PMID: 27059007
  123. Olanow CW, Brundin P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 2013; 28(1): 31-40. doi: 10.1002/mds.25373 PMID: 23390095
  124. Takahashi J. iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regen Ther 2020; 13: 18-22. doi: 10.1016/j.reth.2020.06.002 PMID: 33490319

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024