Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold?
- Авторы: Nasrolahi A.1, Shabani Z.2, Sadigh-Eteghad S.3, Salehi-Pourmehr H.4, Mahmoudi J.3
-
Учреждения:
- Infectious Ophthalmologic Research Cente, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
- Center for Cerebrovascular Research, University of California
- Neurosciences Research Center, Tabriz University of Medical Sciences
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences
- Выпуск: Том 19, № 2 (2024)
- Страницы: 185-199
- Раздел: Medicine
- URL: https://snv63.ru/1574-888X/article/view/645680
- DOI: https://doi.org/10.2174/1574888X18666230222144116
- ID: 645680
Цитировать
Полный текст
Аннотация
Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by substantia nigra dopamine cell death and a varied clinical picture that affects older people. Although more than two centuries have passed since the earliest attempts to find a cure for PD, it remains an unresolved problem. With this in mind, cell replacement therapy is a new strategy for treating PD. This novel approach aims to replace degenerated dopaminergic (DAergic) neurons with new ones or provide a new source of cells that can differentiate into DAergic neurons. Induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs) are among the cells considered for transplantation therapies. Recently disease-modifying strategies like cell replacement therapies combined with other therapeutic approaches, such as utilizing natural compounds or biomaterials, are proposed to modify the underlying neurodegeneration. In the present review, we discuss the current advances in cell replacement therapy for PD and summarize the existing experimental and clinical evidence supporting this approach.
Об авторах
Ava Nasrolahi
Infectious Ophthalmologic Research Cente, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
Email: info@benthamscience.net
Zahra Shabani
Center for Cerebrovascular Research, University of California
Email: info@benthamscience.net
Saeed Sadigh-Eteghad
Neurosciences Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Hanieh Salehi-Pourmehr
Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Javad Mahmoudi
Neurosciences Research Center, Tabriz University of Medical Sciences
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Sveinbjornsdottir S. The clinical symptoms of Parkinsons disease. J Neurochem 2016; 139 (Suppl. 1): 318-24. doi: 10.1111/jnc.13691 PMID: 27401947
- Nasrolahi A. Immune system and new avenues in Parkinsons disease research and treatment. Rev Neurosci 2019; 30(7): 709-27.
- Nasrolahi A, Mahmoudi J, Noori-Zadeh A, Haghani K, Bakhtiyari S, Darabi S. Shared pathological mechanisms between diabetes mellitus and neurodegenerative diseases. Curr Pharmacol Rep 2019; 5(4): 219-31. doi: 10.1007/s40495-019-00191-8
- Antony PMA, Diederich NJ, Krüger R, Balling R. The hallmarks of Parkinsons disease. FEBS J 2013; 280(23): 5981-93. doi: 10.1111/febs.12335 PMID: 23663200
- Sharifi H, Mohajjel Nayebia A, Farajnia S. The effect of chronic administration of buspirone on 6-hydroxydopamine-induced catalepsy in rats. Adv Pharm Bull 2012; 2(1): 127-31. PMID: 24312782
- Nasrolahi A, Mahmoudi J, Akbarzadeh A, et al. Neurotrophic factors hold promise for the future of Parkinsons disease treatment: is there a light at the end of the tunnel? Rev Neurosci 2018; 29(5): 475-89. doi: 10.1515/revneuro-2017-0040 PMID: 29305570
- Bastide MF, Meissner WG, Picconi B, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinsons disease. Prog Neurobiol 2015; 132: 96-168. doi: 10.1016/j.pneurobio.2015.07.002 PMID: 26209473
- Beudel M, Brown P. Adaptive deep brain stimulation in Parkinsons disease. Parkinsonism Relat Disord 2016; 22 (Suppl. 1): S123-6. doi: 10.1016/j.parkreldis.2015.09.028 PMID: 26411502
- Guerra A, Suppa A, DOnofrio V, et al. Abnormal cortical facilitation and L-dopa-induced dyskinesia in Parkinsons disease. Brain Stimul 2019; 12(6): 1517-25. doi: 10.1016/j.brs.2019.06.012 PMID: 31217080
- Bartus RT, Weinberg MS, Samulski RJ. Parkinsons disease gene therapy: success by design meets failure by efficacy. Mol Ther 2014; 22(3): 487-97. doi: 10.1038/mt.2013.281 PMID: 24356252
- Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006; 59(3): 459-66. doi: 10.1002/ana.20737 PMID: 16429411
- George S, Brundin P. Immunotherapy in Parkinsons disease: micromanaging alpha-synuclein aggregation. J Parkinsons Dis 2015; 5(3): 413-24. doi: 10.3233/JPD-150630 PMID: 26406122
- Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinsons disease. Trends Pharmacol Sci 2009; 30(5): 260-7. doi: 10.1016/j.tips.2009.03.001 PMID: 19362379
- Bjorklund A. Cell replacement strategies for neurodegenerative disorders. In: Derek J, Chadwick J, Jammie AG, Eds. Novartis Found Symp. Wiley Online Library 2000. doi: 10.1002/0470870834.ch2
- Napoli E, Borlongan CV. Stem cell recipes of bone marrow and fish: just what the stroke doctors ordered. Stem Cell Rev 2017; 13(2): 192-7. doi: 10.1007/s12015-016-9716-y PMID: 28064388
- Freeman TB, Cicchetti F, Hauser RA, et al. Transplanted fetal striatum in Huntingtons disease: Phenotypic development and lack of pathology. Proc Natl Acad Sci USA 2000; 97(25): 13877-82. doi: 10.1073/pnas.97.25.13877 PMID: 11106399
- Lindvall O, Rehncrona S, Brundin P, et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinsons disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol 1989; 46(6): 615-31. doi: 10.1001/archneur.1989.00520420033021 PMID: 2786405
- Kordower JH, Freeman TB, Snow BJ, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinsons disease. N Engl J Med 1995; 332(17): 1118-24. doi: 10.1056/NEJM199504273321702 PMID: 7700284
- Lindvall O, Brundin P, Widner H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinsons disease. Science 1990; 247(4942): 574-7. doi: 10.1126/science.2105529 PMID: 2105529
- Sancho-Bielsa FJ. Parkinsons disease: Present and future of cell therapy. Neurology Perspectives 2022; 2: S58-68. doi: 10.1016/j.neurop.2021.07.006
- Liao J, Cui C, Chen S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 2009; 4(1): 11-5. doi: 10.1016/j.stem.2008.11.013 PMID: 19097959
- Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell 2009; 4(6): 487-92. doi: 10.1016/j.stem.2009.05.015 PMID: 19497275
- Pollard SM, Conti L, Sun Y, Goffredo D, Smith A. Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb Cortex 2006; 16 (Suppl. 1): i112-20. doi: 10.1093/cercor/bhj167 PMID: 16766697
- Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41-9. doi: 10.1038/nature00870 PMID: 12077603
- Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16(6): 931-52. doi: 10.1089/scd.2007.0036 PMID: 18047393
- Zhang Y, Li C, Jiang X, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 2004; 32(7): 657-64. doi: 10.1016/j.exphem.2004.04.001 PMID: 15246162
- Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinsons disease. BMC Med 2012; 10(1): 1. doi: 10.1186/1741-7015-10-1 PMID: 22216957
- Grealish S, Diguet E, Kirkeby A, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinsons disease. Cell Stem Cell 2014; 15(5): 653-65.
- Park S, Lee KS, Lee YJ, et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett 2004; 359(1-2): 99-103. doi: 10.1016/j.neulet.2004.01.073 PMID: 15050721
- Cho MS, Lee YE, Kim JY, et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2008; 105(9): 3392-7. doi: 10.1073/pnas.0712359105 PMID: 18305158
- Takagi Y, Takahashi J, Saiki H, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005; 115(1): 102-9. doi: 10.1172/JCI21137 PMID: 15630449
- Kim JH, Auerbach JM, Rodríguez-Gómez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinsons disease. Nature 2002; 418(6893): 50-6. doi: 10.1038/nature00900 PMID: 12077607
- Ben-Hur T, Idelson M, Khaner H, et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 2004; 22(7): 1246-55. doi: 10.1634/stemcells.2004-0094 PMID: 15579643
- Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008; 26(1): 55-63. doi: 10.1634/stemcells.2007-0494 PMID: 17951220
- Brederlau A, Correia AS, Anisimov SV, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinsons disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 2006; 24(6): 1433-40. doi: 10.1634/stemcells.2005-0393 PMID: 16556709
- Hedlund E, Pruszak J, Lardaro T, et al. Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinsons disease. Stem Cells 2008; 26(6): 1526-36. doi: 10.1634/stemcells.2007-0996 PMID: 18388307
- Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinsons disease. N Engl J Med 2001; 344(10): 710-9. doi: 10.1056/NEJM200103083441002 PMID: 11236774
- Shroff G, Hopf-Seidel P. Use of human embryonic stem cells in the treatment of Parkinsons disease: a case report. Int J Emerg Ment Health 2015; 17(3): 661-3. PMID: 26568701
- Kirkeby A, Nolbrant S, Tiklova K, et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinsons disease. Cell Stem Cell 2017; 20(1): 135-48. doi: 10.1016/j.stem.2016.09.004 PMID: 28094017
- Piao J, Zabierowski S, Dubose BN, et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 2021; 28(2): 217-229.e7. doi: 10.1016/j.stem.2021.01.004 PMID: 33545080
- Bindhya S, Sidhanth C, Shabna A, Krishnapriya S, Garg M, Ganesan TS. Induced pluripotent stem cells: A new strategy to model human cancer. Int J Biochem Cell Biol 2019; 107: 62-8. doi: 10.1016/j.biocel.2018.12.008 PMID: 30557622
- Park I-H. Disease-specific induced pluripotent stem cells. Cell 2008; 134(5): 877-6. doi: 10.1016/j.cell.2008.07.041
- Soldner F, Hockemeyer D, Beard C, et al. Parkinsons disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136(5): 964-77. doi: 10.1016/j.cell.2009.02.013 PMID: 19269371
- Wernig M, Zhao JP, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinsons disease. Proc Natl Acad Sci USA 2008; 105(15): 5856-61. doi: 10.1073/pnas.0801677105 PMID: 18391196
- Hargus G, Cooper O, Deleidi M, et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA 2010; 107(36): 15921-6. doi: 10.1073/pnas.1010209107 PMID: 20798034
- Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 2010; 19(7): 1017-23. doi: 10.1089/scd.2009.0319 PMID: 19824823
- Zhang Y, Ge M, Hao Q, Dong B. Induced pluripotent stem cells in rat models of Parkinsons disease: A systematic review and meta analysis. Biomed Rep 2018; 8(3): 289-96. doi: 10.3892/br.2018.1049 PMID: 29564126
- Swistowski A, Peng J, Liu Q, et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 2010; 28(10): 1893-904. doi: 10.1002/stem.499 PMID: 20715183
- Emborg ME, Liu Y, Xi J, et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 2013; 3(3): 646-50. doi: 10.1016/j.celrep.2013.02.016 PMID: 23499447
- Hallett PJ, Deleidi M, Astradsson A, et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinsons disease. Cell Stem Cell 2015; 16(3): 269-74. doi: 10.1016/j.stem.2015.01.018 PMID: 25732245
- Kikuchi T, Morizane A, Doi D, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinsons disease model. Nature 2017; 548(7669): 592-6. doi: 10.1038/nature23664 PMID: 28858313
- Tao Y, Vermilyea SC, Zammit M, et al. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nat Med 2021; 27(4): 632-9. doi: 10.1038/s41591-021-01257-1 PMID: 33649496
- Song B, Cha Y, Ko S, et al. Human autologous iPSCderived dopaminergic progenitors restore motor function in Parkinsons disease models. J Clin Invest 2020; 130(2): 904-20. doi: 10.1172/JCI130767 PMID: 31714896
- Schweitzer JS, Song B, Herrington TM, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinsons disease. N Engl J Med 2020; 382(20): 1926-32. doi: 10.1056/NEJMoa1915872 PMID: 32402162
- Cyranoski D. Reprogrammedstem cells implanted into patient with Parkinsons disease. Nature 2018; 563: 1-2.
- Magotani H. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinsons disease. Nat Commun 2020; 11(1): 1-14. PMID: 31911652
- Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97(23): 12846-51. doi: 10.1073/pnas.97.23.12846 PMID: 11070094
- Flax JD, Aurora S, Yang C, et al. Engraftable human neural stem cells respond to development cues, replace neurons, and express foreign genes. Nat Biotechnol 1998; 16(11): 1033-9. doi: 10.1038/3473 PMID: 9831031
- Gage FH. Mammalian neural stem cells. Science 2000; 287(5457): 1433-8. doi: 10.1126/science.287.5457.1433 PMID: 10688783
- Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002; 110(4): 429-41. doi: 10.1016/S0092-8674(02)00862-0 PMID: 12202033
- Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 2017; 106: 94-100. doi: 10.1016/j.neuint.2017.02.006 PMID: 28219641
- Goldberg NRS, Caesar J, Park A, et al. Neural stem cells rescue cognitive and motor dysfunction in a transgenic model of dementia with lewy bodies through a BDNF-dependent mechanism. Stem Cell Reports 2015; 5(5): 791-804. doi: 10.1016/j.stemcr.2015.09.008 PMID: 26489892
- Redmond DE Jr, Bjugstad KB, Teng YD, et al. Behavioral improvement in a primate Parkinsons model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci USA 2007; 104(29): 12175-80. doi: 10.1073/pnas.0704091104 PMID: 17586681
- Choi DH, Kim JH, Kim S, Kang K, Han D, Lee J. Therapeutic potential of induced neural stem cells for Parkinsons disease. Int J Mol Sci 2017; 18(1): 224. doi: 10.3390/ijms18010224 PMID: 28117752
- Bai H, Suzuki Y, Noda T, et al. Dissemination and proliferation of neural stem cells on the spinal cord by injection into the fourth ventricle of the rat: a method for cell transplantation. J Neurosci Methods 2003; 124(2): 181-7. doi: 10.1016/S0165-0270(03)00007-4 PMID: 12706848
- Zuo F, Xiong F, Wang X, et al. Intrastriatal transplantation of human neural stem cells restores the impaired subventricular zone in Parkinsonian mice. Stem Cells 2017; 35(6): 1519-31. doi: 10.1002/stem.2616 PMID: 28328168
- Nasrolahi A, Mahmoudi J, Karimipour M, et al. Effect of cerebral dopamine neurotrophic factor on endogenous neural progenitor cell migration in a rat model of Parkinsons disease. EXCLI J 2019; 18: 139-53. PMID: 30956647
- LEpiscopo F, Tirolo C, Peruzzotti-Jametti L, et al. Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via Wnt/β-catenin signaling. Stem Cells 2018; 36(8): 1179-97. doi: 10.1002/stem.2827 PMID: 29575325
- Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113(12): 1701-10. doi: 10.1172/JCI200420935 PMID: 15199405
- Romieu-Mourez R, François M, Boivin MN, Stagg J, Galipeau J. Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-γ, TGF-β, and cell density. J Immunol 2007; 179(3): 1549-58. doi: 10.4049/jimmunol.179.3.1549 PMID: 17641021
- Chung TH, Hsu SC, Wu SH, et al. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinsons disease. Nanoscale 2018; 10(6): 2998-3007. doi: 10.1039/C7NR06976F PMID: 29372743
- Li Q, Wang Y, Deng Z. Pre-conditioned mesenchymal stem cells: a better way for cell-based therapy. Stem Cell Res Ther 2013; 4(3): 63. doi: 10.1186/scrt213 PMID: 23739590
- Liu Z, Cheung HH. Stem cell-based therapies for Parkinson disease. Int J Mol Sci 2020; 21(21): 8060. doi: 10.3390/ijms21218060 PMID: 33137927
- Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinsons disease. Neurosci Lett 2001; 316(2): 67-70. doi: 10.1016/S0304-3940(01)02384-9 PMID: 11742717
- Venkataramana NK, Kumar SKV, Balaraju S, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinsons disease. Transl Res 2010; 155(2): 62-70. doi: 10.1016/j.trsl.2009.07.006 PMID: 20129486
- Politis M. Optimizing functional imaging protocols for assessing the outcome of fetal cell transplantation in Parkinsons disease. BMC Med 2011; 9(1): 50. doi: 10.1186/1741-7015-9-50 PMID: 21569273
- Cova L, Armentero MT, Zennaro E, et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinsons disease. Brain Res 2010; 1311: 12-27. doi: 10.1016/j.brainres.2009.11.041 PMID: 19945443
- Park HJ, Shin JY, Lee BR, Kim HO, Lee PH. Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model. Cell Transplant 2012; 21(8): 1629-40. doi: 10.3727/096368912X640556 PMID: 22546197
- Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886. doi: 10.3390/cells8080886 PMID: 31412678
- Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC. Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinsons disease. J Neurosci Res 2010; 88(12): 22435. doi: 10.1002/jnr.22435 PMID: 20544825
- Gao F, Chiu SM, Motan D A L, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 2016; 7(1): e2062-. doi: 10.1038/cddis.2015.327 PMID: 26794657
- Park HJ, Oh SH, Kim HN, Jung YJ, Lee PH. Mesenchymal stem cells enhance α-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathol 2016; 132(5): 685-701. doi: 10.1007/s00401-016-1605-6 PMID: 27497943
- Park HJ, Shin JY, Kim HN, Oh SH, Lee PH. Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiol Aging 2014; 35(8): 1920-8. doi: 10.1016/j.neurobiolaging.2014.01.028 PMID: 24629674
- Oh SH, Lee SC, Kim DY, et al. Mesenchymal stem cells stabilize axonal transports for autophagic clearance of α-synuclein in parkinsonian models. Stem Cells 2017; 35(8): 1934-47. doi: 10.1002/stem.2650 PMID: 28580639
- Tomaskovic-Crook E, Crook JM. Human embryonic stem cell therapies for neurodegenerative diseases. CNS Neurol Disord Drug Targets 2011; 10(4): 440-8. doi: 10.2174/187152711795564001
- Finkel Z, Esteban F, Rodriguez B, Fu T, Ai X, Cai L. Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease. Cells 2021; 10(8): 2045. doi: 10.3390/cells10082045 PMID: 34440814
- Studer L, Tabar V, McKay R. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1998; 1(4): 290-5. doi: 10.1038/1105 PMID: 10195162
- Vatsa P, Negi R, Ansari UA, Khanna VK, Pant AB. Insights of extracellular vesicles of mesenchymal stem cells: a prospective cell-free regenerative medicine for neurodegenerative disorders. Mol Neurobiol 2022; 59(1): 459-74. doi: 10.1007/s12035-021-02603-7 PMID: 34714469
- Kikuchi T, Morizane A, Doi D, et al. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinsons disease. J Parkinsons Dis 2011; 1(4): 395-412. doi: 10.3233/JPD-2011-11070 PMID: 23933658
- Teixeira F, Salgado A. Mesenchymal stem cells secretome: current trends and future challenges. Neural Regen Res 2020; 15(1): 75-7. doi: 10.4103/1673-5374.264455 PMID: 31535654
- Teixeira FG, Carvalho MM, Panchalingam KM, et al. Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinsons disease. Stem Cells Transl Med 2017; 6(2): 634-46. doi: 10.5966/sctm.2016-0071 PMID: 28191785
- Martins LF, Costa RO, Pedro JR, et al. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 2017; 7(1): 4153. doi: 10.1038/s41598-017-03592-1 PMID: 28646200
- Teixeira FG, Vilaça-Faria H, Domingues AV, Campos J, Salgado AJ. Preclinical comparison of stem cells secretome and levodopa application in a 6-hydroxydopamine rat model of Parkinsons disease. Cells 2020; 9(2): 315. doi: 10.3390/cells9020315 PMID: 32012897
- Mendes-Pinheiro B, Anjo SI, Manadas B, et al. Bone marrow mesenchymal stem cells secretome exerts neuroprotective effects in a Parkinsons disease rat model. Front Bioeng Biotechnol 2019; 7: 294. doi: 10.3389/fbioe.2019.00294 PMID: 31737616
- Willis CM, Nicaise AM, Hamel R, Pappa V, Peruzzotti-Jametti L, Pluchino S. Harnessing the neural stem cell secretome for regenerative neuroimmunology. Front Cell Neurosci 2020; 14: 590960. doi: 10.3389/fncel.2020.590960 PMID: 33250716
- Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729: 146615. doi: 10.1016/j.brainres.2019.146615 PMID: 31863730
- Mendes-Pinheiro B, Teixeira FG, Anjo SI, Manadas B, Behie LA, Salgado AJ. Secretome of undifferentiated neural progenitor cells induces histological and motor improvements in a rat model of Parkinsons disease. Stem Cells Transl Med 2018; 7(11): 829-38. doi: 10.1002/sctm.18-0009 PMID: 30238668
- Vilaça-Faria H, Marote A, Lages I, et al. Fractionating stem cells secretome for Parkinsons disease modeling: Is it the whole better than the sum of its parts? Biochimie 2021; 189: 87-98. doi: 10.1016/j.biochi.2021.06.008 PMID: 34182001
- Yu H, Sun T, An J, et al. Potential roles of exosomes in Parkinsons disease: from pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol 2020; 8: 86. doi: 10.3389/fcell.2020.00086 PMID: 32154247
- Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinsons disease model by inducing autophagy. Cell Death Dis 2020; 11(4): 288. doi: 10.1038/s41419-020-2473-5 PMID: 32341347
- Wei Y. Future of exosomes and mesenchymal stem cell-derived exosomes in the diagnosis and treatment of Parkinsons disease. Chinese J Tissue Eng Res 2022; 26(25): 4076.
- Newland B, Newland H, Werner C, Rosser A, Wang W. Prospects for polymer therapeutics in Parkinsons disease and other neurodegenerative disorders. Prog Polym Sci 2015; 44: 79-112. doi: 10.1016/j.progpolymsci.2014.12.002
- Shabani Z, Ghadiri T, Karimipour M, et al. Modulatory properties of extracellular matrix glycosaminoglycans and proteoglycans on neural stem cells behavior: Highlights on regenerative potential and bioactivity. Int J Biol Macromol 2021; 171: 366-81. doi: 10.1016/j.ijbiomac.2021.01.006 PMID: 33422514
- Harris JP. Emerging regenerative medicine and tissue engineering strategies for Parkinsons disease. Parkinsons Dis 2020; 6(1): 1-14.
- Kim H, Cooke MJ, Shoichet MS. Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotechnol 2012; 30(1): 55-63. doi: 10.1016/j.tibtech.2011.07.002 PMID: 21831464
- George PM, Lyckman AW, LaVan DA, et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005; 26(17): 3511-9. doi: 10.1016/j.biomaterials.2004.09.037 PMID: 15621241
- Bliss TM, Andres RH, Steinberg GK. Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 2010; 37(2): 275-83. doi: 10.1016/j.nbd.2009.10.003 PMID: 19822211
- Nguyen LH, Gao M, Lin J, Wu W, Wang J, Chew SY. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci Rep 2017; 7(1): 42212. doi: 10.1038/srep42212 PMID: 28169354
- Alaribe FN, Manoto SL, Motaung SCKM. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia (Bratisl) 2016; 71(4): 353-66. doi: 10.1515/biolog-2016-0056
- Doblado LR, Martínez-Ramos C, Pradas MM. Biomaterials for neural tissue engineering. Front Nanotechnol 2021; 3: 643507. doi: 10.3389/fnano.2021.643507
- Moayeri A, Darvishi M, Amraei M. Homing of super paramagnetic iron oxide nanoparticles (spions) labeled adipose-derived stem cells by magnetic attraction in a rat model of Parkinsons disease. Int J Nanomedicine 2020; 15: 1297-308. doi: 10.2147/IJN.S238266 PMID: 32161459
- Bi C, Wang A, Chu Y, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinsons disease treatment. Int J Nanomedicine 2016; 11: 6547-59. doi: 10.2147/IJN.S120939 PMID: 27994458
- Wang TY, Bruggeman KF, Kauhausen JA, Rodriguez AL, Nisbet DR, Parish CL. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinsons disease. Biomaterials 2016; 74: 89-98. doi: 10.1016/j.biomaterials.2015.09.039 PMID: 26454047
- Xue J, Liu Y, Darabi MA, et al. An injectable conductive Gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for Parkinsons disease treatment. Mater Sci Eng C 2019; 100: 584-97. doi: 10.1016/j.msec.2019.03.024 PMID: 30948095
- Li J, Darabi M, Gu J, et al. A drug delivery hydrogel system based on activin B for Parkinsons disease. Biomaterials 2016; 102: 72-86. doi: 10.1016/j.biomaterials.2016.06.016 PMID: 27322960
- Saylam E, Akkaya Y, Ilhan E, et al. Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinsons Disease. Appl Sci (Basel) 2021; 11(22): 10727. doi: 10.3390/app112210727
- Foidl BM, Ucar B, Schwarz A, Rebelo AL, Pandit A, Humpel C. Nerve growth factor released from collagen scaffolds protects axotomized cholinergic neurons of the basal nucleus of Meynert in organotypic brain slices. J Neurosci Methods 2018; 295: 77-86. doi: 10.1016/j.jneumeth.2017.12.003 PMID: 29221639
- Chemmarappally JM, Pegram HCN, Abeywickrama N, et al. A co-culture nanofibre scaffold model of neural cell degeneration in relevance to Parkinsons disease. Sci Rep 2020; 10(1): 2767. doi: 10.1038/s41598-020-59310-x PMID: 32066745
- Politis M, Niccolini F. Serotonin in Parkinsons disease. Behav Brain Res 2015; 277: 136-45. doi: 10.1016/j.bbr.2014.07.037 PMID: 25086269
- Surmeier DJ, Obeso JA, Halliday GM. Parkinsons disease is not simply a prion disorder. J Neurosci 2017; 37(41): 9799-807. doi: 10.1523/JNEUROSCI.1787-16.2017 PMID: 29021297
- Politis M. Serotonin neuron loss and nonmotor symptoms continue in Parkinsons patients treated with dopamine grafts. Sci Transl Med 2012; 4(128): 128ra41. doi: 10.1126/scitranslmed.3003391
- Katsukawa M, Nakajima Y, Fukumoto A, Doi D, Takahashi J. Fail-safe therapy by gamma-ray irradiation against tumor formation by human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev 2016; 25(11): 815-25. doi: 10.1089/scd.2015.0394 PMID: 27059007
- Olanow CW, Brundin P. Parkinsons disease and alpha synuclein: is Parkinsons disease a prion-like disorder? Mov Disord 2013; 28(1): 31-40. doi: 10.1002/mds.25373 PMID: 23390095
- Takahashi J. iPS cell-based therapy for Parkinsons disease: A Kyoto trial. Regen Ther 2020; 13: 18-22. doi: 10.1016/j.reth.2020.06.002 PMID: 33490319
Дополнительные файлы
