Neurogenesis, A Potential Target for Intermittent Hypoxia Leading to Cognitive Decline


Citar

Texto integral

Resumo

As a sleep breathing disorder, characterized by intermittent hypoxia (IH) and Obstructive sleep apnea (OSA), is believed to decrease the cognitive function of patients. Many factors are thought to be responsible for cognitive decline in OSA patients. Neurogenesis, a process by which neural stem cells (NSCs) differentiate into new neurons in the brain, is a major determinant affecting cognitive function. However, there is no clear relationship between IH or OSA and neurogenesis. In recent years, increasing numbers of studies on IH and neurogenesis are documented. Therefore, this review summarizes the effects of IH on neurogenesis; then discusses the influencing factors that may cause these effects and the potential signaling pathways that may exist. Finally, based on this impact, we discuss potential methods and future directions for improving cognition.

Sobre autores

Yuxing Liu

Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute

Email: info@benthamscience.net

Jin Tan

Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute

Email: info@benthamscience.net

Yuyang Miao

Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute

Email: info@benthamscience.net

Qiang Zhang

Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Montagne A, Huuskonen MT, Rajagopal G, et al. Undetectable gadolinium brain retention in individuals with an age-dependent blood-brain barrier breakdown in the hippocampus and mild cognitive impairment. Alzheimers Dement 2019; 15(12): 1568-75. doi: 10.1016/j.jalz.2019.07.012 PMID: 31862169
  2. He B, Chen W, Zeng J, Tong W, Zheng P. MicroRNA‐326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimer’s disease. J Cell Physiol 2020; 235(1): 480-93. doi: 10.1002/jcp.28988 PMID: 31385301
  3. Richetin K, Steullet P, Pachoud M, et al. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat Neurosci 2020; 23(12): 1567-79. doi: 10.1038/s41593-020-00728-x PMID: 33169029
  4. Cizeron M, Qiu Z, Koniaris B, et al. A brainwide atlas of synapses across the mouse life span. Science 2020; 369(6501): 270-5. doi: 10.1126/science.aba3163 PMID: 32527927
  5. Sahay A, Scobie KN, Hill AS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 2011; 472(7344): 466-70. doi: 10.1038/nature09817 PMID: 21460835
  6. Choi SH, Bylykbashi E, Chatila ZK, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model in sentence style. Science 2018; 361.
  7. Rosenzweig I, Glasser M, Polsek D, Leschziner GD, Williams SCR, Morrell MJ. Sleep apnoea and the brain: A complex relationship. Lancet Respir Med 2015; 3(5): 404-14. doi: 10.1016/S2213-2600(15)00090-9 PMID: 25887982
  8. Nelson R. Obstructive sleep apnoea in children might impair cognition and behaviour. Lancet 2002; 359(9319): 1754. doi: 10.1016/S0140-6736(02)08666-X PMID: 12049870
  9. Nair D, Zhang SXL, Ramesh V, et al. Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. Am J Respir Crit Care Med 2011; 184(11): 1305-12. doi: 10.1164/rccm.201107-1173OC PMID: 21868506
  10. Burckhardt IC, Gozal D, Dayyat E, et al. Green tea catechin polyphenols attenuate behavioral and oxidative responses to intermittent hypoxia. Am J Respir Crit Care Med 2008; 177(10): 1135-41. doi: 10.1164/rccm.200701-110OC PMID: 18276944
  11. Rosenberg GA. Extracellular matrix inflammation in vascular cognitive impairment and dementia. Clin Sci 2017; 131(6): 425-37. doi: 10.1042/CS20160604 PMID: 28265034
  12. Cai XH, Li XC, Jin SW, et al. Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats. Exp Neurol 2014; 257: 148-56. doi: 10.1016/j.expneurol.2014.04.029 PMID: 24810321
  13. Khuu MA, Nallamothu T, Castro-Rivera CI, Arias-Cavieres A, Szujewski CC, Garcia AJ III. Stage-dependent effects of intermittent hypoxia influence the outcome of hippocampal adult neurogenesis. Sci Rep 2021; 11(1): 6005. doi: 10.1038/s41598-021-85357-5 PMID: 33727588
  14. Martin N, Bossenmeyer-Pourié C, Koziel V, et al. Non-injurious neonatal hypoxia confers resistance to brain senescence in aged male rats. PLoS One 2012; 7(11): e48828. doi: 10.1371/journal.pone.0048828 PMID: 23173039
  15. Tsai YW, Yang YR, Sun SH, Liang KC, Wang RY. Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment. J Cereb Blood Flow Metab 2013; 33(5): 764-73. doi: 10.1038/jcbfm.2013.15 PMID: 23443175
  16. Zhu XH, Yan HC, Zhang J, et al. Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 2010; 30(38): 12653-63. doi: 10.1523/JNEUROSCI.6414-09.2010 PMID: 20861371
  17. Meng SX, Wang B, Li WT. Intermittent hypoxia improves cognition and reduces anxiety‐related behavior in APP/PS1 mice. Brain Behav 2020; 10(2): e01513. doi: 10.1002/brb3.1513 PMID: 31877583
  18. Khuu MA, Pagan CM, Nallamothu T, et al. Intermittent hypoxia disrupts adult neurogenesis and synaptic plasticity in the dentate gyrus. J Neurosci 2019; 39(7): 1320-31. doi: 10.1523/JNEUROSCI.1359-18.2018 PMID: 30587544
  19. Wu X, Lu H, Hu L, et al. Chronic intermittent hypoxia affects endogenous serotonergic inputs and expression of synaptic proteins in rat hypoglossal nucleus. Am J Transl Res 2017; 9(2): 546-57. PMID: 28337282
  20. Gozal D, Row BW, Gozal E, et al. Temporal aspects of spatial task performance during intermittent hypoxia in the rat: Evidence for neurogenesis. Eur J Neurosci 2003; 18(8): 2335-42. doi: 10.1046/j.1460-9568.2003.02947.x PMID: 14622195
  21. Cha J, Zea-Hernandez JA, Sin S, et al. The effects of obstructive sleep apnea syndrome on the dentate gyrus and learning and memory in children. J Neurosci 2017; 37(16): 4280-8. doi: 10.1523/JNEUROSCI.3583-16.2017 PMID: 28320844
  22. Canessa N, Castronovo V, Cappa SF, et al. Obstructive sleep apnea: Brain structural changes and neurocognitive function before and after treatment. Am J Respir Crit Care Med 2011; 183(10): 1419-26. doi: 10.1164/rccm.201005-0693OC PMID: 21037021
  23. Bi XY, Wang TS, Zhang M, Liu QQ, Li WB, Zhang Y. The up-regulation of p-p38 MAPK during the induction of brain ischemic tolerance induced by intermittent hypobaric hypoxia preconditioning in rats. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih 2014; 30(2): 97-100. PMID: 25016855
  24. Zhu L, Zhao T, Li H, et al. Neurogenesis in the adult rat brain after intermittent hypoxia. Brain Res 2005; 1055(1-2): 1-6. doi: 10.1016/j.brainres.2005.04.075 PMID: 16098951
  25. Bartlett D, Rae C, Thompson C, et al. Hippocampal area metabolites relate to severity and cognitive function in obstructive sleep apnea. Sleep Med 2004; 5(6): 593-6. doi: 10.1016/j.sleep.2004.08.004 PMID: 15511707
  26. Wall AM, Corcoran AE, O’Halloran KD, O’Connor JJ. Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis 2014; 62: 8-17. doi: 10.1016/j.nbd.2013.08.016 PMID: 24055213
  27. Reeves SR, Guo SZ, Brittian KR, Row BW, Gozal D. Anatomical changes in selected cardio-respiratory brainstem nuclei following early post-natal chronic intermittent hypoxia. Neurosci Lett 2006; 402(3): 233-7. doi: 10.1016/j.neulet.2006.04.013 PMID: 16697524
  28. Kjell J, Fischer-Sternjak J, Thompson AJ, et al. Defining the adult neural stem cell niche proteome identifies key regulators of adult neurogenesis. Cell Stem Cell 2020; 26(2): 277-93. doi: 10.1016/j.stem.2020.01.002 PMID: 32032526
  29. Ernst A, Alkass K, Bernard S, et al. Neurogenesis in the striatum of the adult human brain. Cell 2014; 156(5): 1072-83. doi: 10.1016/j.cell.2014.01.044 PMID: 24561062
  30. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 2012; 92(3): 967-1003. doi: 10.1152/physrev.00030.2011 PMID: 22811423
  31. Wu X, Gong L, Xie L, et al. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-parkin pathway of mitophagy in a murine model of sleep apnea. Front Immunol 2021; 12: 628168. doi: 10.3389/fimmu.2021.628168 PMID: 33717152
  32. Jung ME, Simpkins JW, Wilson AM, et al. Intermittent hypoxia conditioning prevents behavioral deficit and brain oxidative stress in ethanol-withdrawn rats in sentence style. J Appl Physiol 1985; 2008(105): 510-7.
  33. Kang JJ, Guo B, Liang WH, et al. Daily acute intermittent hypoxia induced dynamic changes in dendritic mitochondrial ultrastructure and cytochrome oxidase activity in the pre-Bötzinger complex of rats. Exp Neurol 2019; 313: 124-34. doi: 10.1016/j.expneurol.2018.12.008 PMID: 30586594
  34. Kang JJ, Fung ML, Zhang K, et al. Chronic intermittent hypoxia alters the dendritic mitochondrial structure and activity in the pre‐Bötzinger complex of rats. FASEB J 2020; 34(11): 14588-601. doi: 10.1096/fj.201902141R PMID: 32910512
  35. Sapin E, Peyron C, Roche F, et al. Chronic intermittent hypoxia induces chronic low-grade neuroinflammation in the dorsal hippocampus of mice. Sleep 2015; 38(10): 1537-46. doi: 10.5665/sleep.5042 PMID: 26085297
  36. Willis EF, MacDonald KPA, Nguyen QH, et al. Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 2020; 180(5): 833-846.e16. doi: 10.1016/j.cell.2020.02.013 PMID: 32142677
  37. Lam CS, Tipoe GL, So KF, Fung ML. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLoS One 2015; 10(2): e0117990. doi: 10.1371/journal.pone.0117990 PMID: 25714473
  38. Hirota Y, Sawada M, Huang S, et al. Roles of wnt signaling in the neurogenic niche of the adult mouse ventricular–subventricular zone. Neurochem Res 2016; 41(1-2): 222-30. doi: 10.1007/s11064-015-1766-z PMID: 26572545
  39. Ortiz-Matamoros A, Salcedo-Tello P, Avila-Muñoz E, Zepeda A, Arias C. Role of wnt signaling in the control of adult hippocampal functioning in health and disease: Therapeutic implications. Curr Neuropharmacol 2013; 11(5): 465-76. doi: 10.2174/1570159X11311050001 PMID: 24403870
  40. L’Episcopo F, Tirolo C, Testa N, et al. Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease involves cross talk between inflammatory and Wnt/β-catenin signaling pathways: Functional consequences for neuroprotection and repair. J Neurosci 2012; 32(6): 2062-85. doi: 10.1523/JNEUROSCI.5259-11.2012 PMID: 22323720
  41. L’Episcopo F, Tirolo C, Testa N, et al. Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells 2014; 32(8): 2147-63. doi: 10.1002/stem.1708 PMID: 24648001
  42. Sun C, Fu J, Qu Z, et al. Chronic intermittent hypobaric hypoxia restores hippocampus function and rescues cognitive impairments in chronic epileptic rats via Wnt/β-catenin signaling. Front Mol Neurosci 2021; 13: 617143. doi: 10.3389/fnmol.2020.617143 PMID: 33584201
  43. Pan YY, Deng Y, Xie S, et al. Altered wnt signaling pathway in cognitive impairment caused by chronic intermittent hypoxia. Chin Med J 2016; 129(7): 838-45. doi: 10.4103/0366-6999.178969 PMID: 26996481
  44. Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci 2011; 108(7): 3017-22. doi: 10.1073/pnas.1015950108 PMID: 21282661
  45. Bhattarai P, Cosacak MI, Mashkaryan V, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer’s model of adult zebrafish brain. PLoS Biol 2020; 18(1): e3000585. doi: 10.1371/journal.pbio.3000585 PMID: 31905199
  46. Kushwah N, Jain V, Deep S, Prasad D, Singh SB, Khan N. Neuroprotective role of intermittent hypobaric hypoxia in unpredictable chronic mild stress induced depression in rats. PLoS One 2016; 11(2): e0149309. doi: 10.1371/journal.pone.0149309 PMID: 26901349
  47. Zhang K, Zhao T, Huang X, et al. Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia. Neurobiol Dis 2014; 64: 66-78. doi: 10.1016/j.nbd.2013.12.010 PMID: 24368168
  48. Ross HH, Sandhu MS, Cheung TF, et al. In Vivo intermittent hypoxia elicits enhanced expansion and neuronal differentiation in cultured neural progenitors. Exp Neurol 2012; 235(1): 238-45. doi: 10.1016/j.expneurol.2012.01.027 PMID: 22366327
  49. Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 2017; 82(12): 914-23. doi: 10.1016/j.biopsych.2017.05.013 PMID: 28629541
  50. Musso MF, Lindsey HM, Wilde EA, et al. Volumetric brain magnetic resonance imaging analysis in children with obstructive sleep apnea. Int J Pediatr Otorhinolaryngol 2020; 138: 110369. doi: 10.1016/j.ijporl.2020.110369 PMID: 32927352
  51. Macey PM, Henderson LA, Macey KE, et al. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med 2002; 166(10): 1382-7. doi: 10.1164/rccm.200201-050OC PMID: 12421746
  52. Huang X, Tang S, Lyu X, Yang C, Chen X. Structural and functional brain alterations in obstructive sleep apnea: A multimodal meta-analysis. Sleep Med 2019; 54: 195-204. doi: 10.1016/j.sleep.2018.09.025 PMID: 30580194
  53. Torelli F, Moscufo N, Garreffa G, et al. Cognitive profile and brain morphological changes in obstructive sleep apnea. Neuroimage 2011; 54(2): 787-93. doi: 10.1016/j.neuroimage.2010.09.065 PMID: 20888921
  54. Owen JE, Benediktsdottir B, Cook E, Olafsson I, Gislason T, Robinson SR. Alzheimer’s disease neuropathology in the hippocampus and brainstem of people with obstructive sleep apnea. Sleep 2021; 44(3): zsaa195. doi: 10.1093/sleep/zsaa195
  55. Cross NE, Memarian N, Duffy SL, et al. Structural brain correlates of obstructive sleep apnoea in older adults at risk for dementia in sentence style. Eur Respir J 2018; 52.
  56. Yang L, Zhao J, Qu Y, et al. Metoprolol prevents neuronal dendrite remodeling in a canine model of chronic obstructive sleep apnea. Acta Pharmacol Sin 2020; 41(5): 620-8. doi: 10.1038/s41401-019-0323-8 PMID: 31863057
  57. An JR, Zhao YS, Luo LF, Guan P, Tan M. Ji ES. Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia. Life Sci 2020; 250: 117573. doi: 10.1016/j.lfs.2020.117573 PMID: 32209423
  58. Yin X, Zhang X, Lv C, et al. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci Rep 2015; 5(1): 14507. doi: 10.1038/srep14507 PMID: 26419512
  59. Xie H, Leung KL, Chen L, et al. Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity. Neurobiol Dis 2010; 40(1): 155-62. doi: 10.1016/j.nbd.2010.05.020 PMID: 20553872
  60. Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 1998; 11(4): 234-45. doi: 10.1006/mcne.1998.0684 PMID: 9675054
  61. Takeshima Y, Nakamura M, Miyake H, et al. Neuroprotection with intraventricular brain-derived neurotrophic factor in rat venous occlusion model. Neurosurgery 2011; 68(5): 1334-41. doi: 10.1227/NEU.0b013e31820c048e PMID: 21307800
  62. Maresky HS, Shpirer I, Klar MM, Levitt M, Sasson E, Tal S. Continuous positive airway pressure alters brain microstructure and perfusion patterns in patients with obstructive sleep apnea. Sleep Med 2019; 57: 61-9. doi: 10.1016/j.sleep.2018.12.027 PMID: 30897457
  63. Orrù G, Storari M, Scano A, Piras V, Taibi R, Viscuso D. Obstructive sleep apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. Eur Rev Med Pharmacol Sci 2020; 24(12): 6939-48. PMID: 32633387
  64. Sharma D, Maslov LN, Singh N, Jaggi AS. Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: Preclinical evidence and mechanisms. Eur J Pharmacol 2020; 883: 173380. doi: 10.1016/j.ejphar.2020.173380 PMID: 32693098
  65. Mieszkowski J, Stankiewicz B, Kochanowicz A, et al. Remote ischemic preconditioning reduces marathon-induced oxidative stress and decreases liver and heart injury markers in the serum. Front Physiol 2021; 12: 731889. doi: 10.3389/fphys.2021.731889 PMID: 34552508
  66. Bouslama M, Adla-Biassette H, Ramanantsoa N, et al. Protective effects of intermittent hypoxia on brain and memory in a mouse model of apnea of prematurity. Front Physiol 2015; 6: 313. doi: 10.3389/fphys.2015.00313 PMID: 26582992
  67. Tsai YW, Yang YR, Wang PS, Wang RY. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS One 2011; 6(8): e24001. doi: 10.1371/journal.pone.0024001 PMID: 21887361
  68. Ross HH, Sandhu MS, Sharififar S, Fuller DD. Delivery of in vivo Acute Intermittent Hypoxia in Neonatal Rodents to Prime Subventricular Zone-derived Neural Progenitor Cell Cultures. J Vis Exp 2015; (105): e52527. PMID: 26556530
  69. Ding FS, Cheng X, Zhao T, et al. Intermittent hypoxic preconditioning relieves fear and anxiety behavior in post-traumatic stress model mice. Sheng Li Xue Bao 2019; 71(4): 537-46. PMID: 31440750
  70. Baker-Herman TL, Fuller DD, Bavis RW, et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 2004; 7(1): 48-55. doi: 10.1038/nn1166 PMID: 14699417
  71. Huang YJ, Yuan YJ, Liu YX, et al. Nitric oxide participates in the brain ischemic tolerance induced by intermittent hypobaric hypoxia in the hippocampal CA1 subfield in rats. Neurochem Res 2018; 43(9): 1779-90. doi: 10.1007/s11064-018-2593-9 PMID: 29995175
  72. Rybnikova E, Sitnik N, Gluschenko T, Tjulkova E, Samoilov MO. The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobaric hypoxia in rats. Brain Res 2006; 1089(1): 195-202. doi: 10.1016/j.brainres.2006.03.053 PMID: 16638610
  73. Yue W, Cunlin G, Lu H, Yuanqing Z, Yanjun T, Qiong W. Neuroprotective effect of intermittent hypobaric hypoxia preconditioning on cerebral ischemia/reperfusion in rats. Int J Clin Exp Pathol 2020; 13(11): 2860-9. PMID: 33284899
  74. Zhen J, Wang W, Zhou J, et al. Chronic intermittent hypoxic preconditioning suppresses pilocarpine-induced seizures and associated hippocampal neurodegeneration. Brain Res 2014; 1563: 122-30. doi: 10.1016/j.brainres.2014.03.032 PMID: 24680745
  75. Das T, Soren K, Yerasi M, Kamle A, Kumar A, Chakravarty S. Molecular basis of sex difference in neuroprotection induced by hypoxia preconditioning in Zebrafish. Mol Neurobiol 2020; 57(12): 5177-92. doi: 10.1007/s12035-020-02091-1 PMID: 32862360
  76. Wu Q, Yu KX, Ma QS, Liu YN. Effects of intermittent hypobaric hypoxia preconditioning on the expression of neuroglobin and Bcl-2 in the rat hippocampal CA1 area following ischemia-reperfusion. Genet Mol Res 2015; 14(3): 10799-807. doi: 10.4238/2015.September.9.18 PMID: 26400308

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024