Artificial Intelligence Technologies used for the Assessment of Pharmaceutical Excipients


Cite item

Full Text

About the authors

Ashutosh Kumar

Department of Pharmaceutics, ISF College of Pharmacy

Email: info@benthamscience.net

Ghanshyam Gupta

Department of Pharmaceutics, ISF College of Pharmacy

Email: info@benthamscience.net

Sarjana Raikwar

Department of Pharmaceutics, ISF College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chaudhari SP, Patil PS. Pharmaceutical excipients: A review. Int J Adv Pharm Biol Chem 2012; 1: 21-34.
  2. Patel P, Ahir K, Patel V, Manani L, Patel C. Drug-excipient compatibility studies: First step for dosage form development. Pharma Innov 2015; 4: 14.
  3. Yang W, Wu D. Microcalorimetry in pharmaceutical development. Encyclopedia of Pharmaceutical Science and Technology CRC Press. 2013; Six : p: p. 2149-56.
  4. Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023; 15(7): 1916. doi: 10.3390/pharmaceutics15071916 PMID: 37514102
  5. Hariry RE,, Barenji RV,, Azizi A. Toward Pharma 4.0 in drug discovery Industry 40: Technologies, Applications, and Challenges Springer. 2022; pp. 221-38.
  6. Bouhouita-Guermech S, Gogognon P, Bélisle-Pipon J-C. Specific challenges posed by artificial intelligence in research ethics Front. Artif Intell 2023; 6. doi: 10.3389/frai.2023.1149082
  7. Khalid GM, Usman AG. Application of data-intelligence algorithms for modeling the compaction performance of new pharmaceutical excipients. Future J Pharm Sci 2021; 7(1): 31. doi: 10.1186/s43094-021-00183-w
  8. Chen C, Yaari Z, Apfelbaum E, Grodzinski P, Shamay Y, Heller DA. Merging data curation and machine learning to improve nanomedicines. Adv Drug Deliv Rev 2022; 183: 114172. doi: 10.1016/j.addr.2022.114172 PMID: 35189266
  9. Shah HS, Chaturvedi K, Kuang S, Wang J. Accelerating pre-formulation investigations in early drug product life cycles using predictive methodologies and computational algorithms. Ther Deliv 2021; 12(11): 789-97. doi: 10.4155/tde-2021-0043 PMID: 34792419
  10. Tesfay D, Abrha S, Yilma Z, Woldu G, Molla F. Preparation, optimization, and evaluation of epichlorohydrin cross-linked enset (Ensete ventricosum (Welw.) Cheeseman) starch as drug release sustaining excipient in microsphere formulation. Biomed Res Int 2020; 2020.
  11. Cadden J, Gupta KM, Kanaujia P, Coles SJ, Aitipamula S. Cocrystal formulations: Evaluation of the impact of excipients on dissolution by molecular simulation and experimental approaches. Cryst Growth Des 2021; 21(2): 1006-18. doi: 10.1021/acs.cgd.0c01351
  12. Ziatdinov M, Ghosh A, Wong CY, Kalinin SV. AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. Nat Mach Intell 2022; 4(12): 1101-12. doi: 10.1038/s42256-022-00555-8
  13. Sultana A, Maseera R, Rahamanulla A, Misiriya A. Emerging of artificial intelligence and technology in pharmaceuticals: Review. Future J Pharm Sci 2023; 9(1): 65. doi: 10.1186/s43094-023-00517-w
  14. Wang N, Sun H, Dong J, Ouyang D, Pharm DE, Pharm DE. A new expert system for drug-excipient compatibility evaluation. Int J Pharm 2021; 607: 120962. doi: 10.1016/j.ijpharm.2021.120962 PMID: 34339812
  15. Chun Matthew. How artificial intelligence is revolutionizing drug discovery. Artificial Intelligence, Biotechnology Avaialble from: https://blog.petrieflom.law.harvard.edu/2023/03/20/how-artificial-intelligence-is-revolutionizing-drug-discovery/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers