Cpd861 Targeting BCL2 to Alleviate Hepatic Fibrosis: Network Pharmacology, Mendelian Randomization, and Molecular Docking Mechanisms


Cite item

Full Text

Abstract

Background:Compound 861 (Cpd861) is a traditional Chinese herbal compound for the treatment of hepatic fibrosis (HF). In the current investigation, Cpd861 has been demonstrated to have an underlying molecular mechanism and material foundation for the treatment of HF through network pharmacology, Mendelian randomization (MR), and molecular docking.

Methods:Public databases were consulted for Cpd861 constituents and HF targets. Protein-protein interactions (PPIs) were established using STRING software, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. To elucidate the causal relationship between potential targets and liver injury, MR was used as a methodological tool. Finally, a molecular docking analysis was conducted between the active compound and the key target.

Results:We obtained 174 active ingredients and 113 intersecting genes. Through the PPI network, high-degree targets were identified, namely CTNNB1, ESR1, FOS, MDM2, CCND1, TP53, RELA, and BCL2. As shown by GO and KEGG pathway enrichment analyses, Cpd861 functions through xenobiotic stimulus and oxidative stress-related genes, as well as the PI3K-AKT and non-alcoholic fatty liver disease (NAFLD) signaling pathways. The results of MR showed that MDM2 and BCL2 had a causal relationship with liver injury. Molecular docking results showed that several active compounds in Cpd861 were stably bound to BCL2.

Results:We obtained 174 active ingredients and 113 intersecting genes. Through the PPI network, high-degree targets were identified, namely CTNNB1, ESR1, FOS, MDM2, CCND1, TP53, RELA, and BCL2. As shown by GO and KEGG pathway enrichment analyses, Cpd861 functions through xenobiotic stimulus and oxidative stress-related genes, as well as the PI3K-AKT and non-alcoholic fatty liver disease (NAFLD) signaling pathways. The results of MR showed that MDM2 and BCL2 had a causal relationship with liver injury. Molecular docking results showed that several active compounds in Cpd861 were stably bound to BCL2.

Conclusion:This study made predictions regarding the efficacious components, as well as potential targets and pathways of Cpd861 in the therapy of HF. This will open up a new perspective for further investigation of the molecular mechanism of Cpd861 in the treatment of HF.

About the authors

Yaning Lyu

School of Nursing, Shandong Second Medical University

Email: info@benthamscience.net

Xifeng Liang

School of Nursing, Shandong Second Medical University

Email: info@benthamscience.net

Shuang Gao

School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences

Email: info@benthamscience.net

Jing Li

School of Nursing, Shandong Second Medical University

Email: info@benthamscience.net

Jinming Li

School of Nursing, Jining Medical University

Email: info@benthamscience.net

Shuhan Zhang

School of Nursing, Jining Medical University

Email: info@benthamscience.net

Chenghong Yin

Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital

Author for correspondence.
Email: info@benthamscience.net

Cheng Chi

School of Nursing,, Jining Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Guo YC, Lu LG. Antihepatic fibrosis drugs in clinical trials. J Clin Transl Hepatol 2020; 8(3): 304-12. PMID: 33083254
  2. Aydin MM, Akçalı KC. Liver fibrosis. Turk J Gastroenterol 2018; 29(1): 14-21. doi: 10.5152/tjg.2018.17330 PMID: 29391303
  3. Friedman SL, Pinzani M. Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology 2022; 75(2): 473-88. doi: 10.1002/hep.32285 PMID: 34923653
  4. Cheng D, Chai J, Wang H, Fu L, Peng S, Ni X. Hepatic macrophages: Key players in the development and progression of liver fibrosis. Liver Int 2021; 41(10): 2279-94. doi: 10.1111/liv.14940 PMID: 33966318
  5. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: A translational success story. Gut 2015; 64(5): 830-41. doi: 10.1136/gutjnl-2014-306842 PMID: 25681399
  6. George J, Tsuchishima M, Tsutsumi M. Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Dis 2019; 10(1): 18. doi: 10.1038/s41419-018-1272-8 PMID: 30622238
  7. Zhou J, Huang N, Guo Y, et al. Combined obeticholic acid and apoptosis inhibitor treatment alleviates liver fibrosis. Acta Pharm Sin B 2019; 9(3): 526-36. doi: 10.1016/j.apsb.2018.11.004 PMID: 31193776
  8. Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 2010; 7(8): 425-36. doi: 10.1038/nrgastro.2010.97 PMID: 20585339
  9. Xu HY, Zhang YQ, Liu ZM, et al. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 2019; 47(D1): D976-82. doi: 10.1093/nar/gky987 PMID: 30365030
  10. Hou F, Liu R, Liu X, et al. Attenuation of liver fibrosis by herbal compound 861 via upregulation of BMP-7/Smad signaling in the bile duct ligation model rat. Mol Med Rep 2016; 13(5): 4335-42. doi: 10.3892/mmr.2016.5071 PMID: 27035233
  11. Levy C, Seeff L, Lindor K. Use of herbal supplements for chronic liver disease. Clin Gastroenterol Hepatol 2004; 2(11): 947-56. doi: 10.1016/S1542-3565(04)00455-0 PMID: 15551246
  12. Zhou W, Wu JR, Zhu YL, et al. Study on the mechanisms of compound Kushen injection for the treatment of gastric cancer based on network pharmacology. BMC Complement Med Ther 2020; 6: 6.
  13. Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  14. Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012; 13(6): 6964-82. doi: 10.3390/ijms13066964 PMID: 22837674
  15. Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013; 145(1): 1-10. doi: 10.1016/j.jep.2012.09.051 PMID: 23142198
  16. Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016; 54: 1.30.1-1.30.33.
  17. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98. doi: 10.1093/nar/gku1205 PMID: 25428349
  18. Barbarino JM, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med 2018; 10(4): e1417. doi: 10.1002/wsbm.1417 PMID: 29474005
  19. Zhou Y, Zhang Y, Zhao D, et al. TTD: Therapeutic target database describing target druggability information. Nucleic Acids Res 2023; 52(D1): D1465-77. PMID: 37713619
  20. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82. doi: 10.1093/nar/gkx1037 PMID: 29126136
  21. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504. doi: 10.1101/gr.1239303 PMID: 14597658
  22. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12. doi: 10.1093/nar/gkaa1074 PMID: 33237311
  23. Zhang W, Tian W, Wang Y, et al. Explore the mechanism and substance basis of Mahuang FuziXixin decoction for the treatment of lung cancer based on network pharmacology and molecular docking. Comput Biol Med 2022; 151(Pt A): 106293. doi: 10.1016/j.compbiomed.2022.106293 PMID: 36399857
  24. Li M, Zheng R, Zhang H, Wang J, Pan Y. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods 2014; 67(3): 325-33. doi: 10.1016/j.ymeth.2014.02.016 PMID: 24565748
  25. Song W, Ni S, Fu Y, Wang Y. Uncovering the mechanism of Maxing Ganshi decoction on asthma from a systematic perspective: A network pharmacology study. Sci Rep 2018; 8(1): 17362. doi: 10.1038/s41598-018-35791-9 PMID: 30478434
  26. Ji C, Ma J, Feng C, et al. Promotion of hair regrowth in androgenetic alopecia with supplemented Erzhi Wan: Exploring its mechanism using network pharmacology and molecular docking. Clin Cosmet Investig Dermatol 2023; 16: 2995-3022. doi: 10.2147/CCID.S425295 PMID: 37901149
  27. Wang Y, Yuan Y, Wang W, et al. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Comput Biol Med 2022; 145: 105454. doi: 10.1016/j.compbiomed.2022.105454 PMID: 35367781
  28. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30. doi: 10.1093/nar/28.1.27 PMID: 10592173
  29. Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021; 2(3): 100141. doi: 10.1016/j.xinn.2021.100141 PMID: 34557778
  30. Mounier N, Kutalik Z. Bias correction for inverse variance weighting Mendelian randomization. Genet Epidemiol 2023; 47(4): 314-31. doi: 10.1002/gepi.22522 PMID: 37036286
  31. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 2017; 32(5): 377-89. doi: 10.1007/s10654-017-0255-x PMID: 28527048
  32. Jin T, Huang W, Cao F, et al. Causal association between systemic lupus erythematosus and the risk of dementia: A Mendelian randomization study. Front Immunol 2022; 13: 1063110. doi: 10.3389/fimmu.2022.1063110 PMID: 36569847
  33. Choi KW, Chen CY, Stein MB, et al. Assessment of bidirectional relationships between physical activity and depression among adults. JAMA Psychiatry 2019; 76(4): 399-408. doi: 10.1001/jamapsychiatry.2018.4175 PMID: 30673066
  34. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 2018; 50(5): 693-8. doi: 10.1038/s41588-018-0099-7 PMID: 29686387
  35. Wu Y, Li Y, Zhu J, Long J. Shared genetics and causality underlying epilepsy and attention-deficit hyperactivity disorder. Psychiatry Res 2022; 316: 114794. doi: 10.1016/j.psychres.2022.114794 PMID: 35994864
  36. Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42. doi: 10.1093/nar/28.1.235 PMID: 10592235
  37. Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13. doi: 10.1093/nar/gkv951 PMID: 26400175
  38. Ji L, Song T, Ge C, et al. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation. Biomed Pharmacother 2023; 165: 115210. doi: 10.1016/j.biopha.2023.115210 PMID: 37499457
  39. Rosignoli S, di Paola L, Paiardini A. PyPCN: Protein contact networks in PyMOL. Bioinformatics 2023; 39(11): btad675. doi: 10.1093/bioinformatics/btad675 PMID: 37941462
  40. Zhang Z, Shang J, Yang Q, et al. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnol 2023; 21(1): 29. doi: 10.1186/s12951-023-01788-4 PMID: 36698192
  41. Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A. Hepatic fibrosis: Molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 2005; 45(1): 605-28. doi: 10.1146/annurev.pharmtox.45.120403.095906 PMID: 15471534
  42. Chi C, Liu X, Hou F, et al. Herbal compound 861 prevents hepatic fibrosis by inhibiting the TGF-β1/Smad/SnoN pathway in bile duct-ligated rats. BMC Complement Altern Med 2018; 18(1): 52. doi: 10.1186/s12906-018-2119-7 PMID: 29402324
  43. Yang C, Tao H, Zhang H, et al. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss. Autophagy 2022; 18(12): 2817-29. doi: 10.1080/15548627.2022.2048432 PMID: 35255774
  44. Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis 2023; 28(1-2): 20-38. doi: 10.1007/s10495-022-01780-7 PMID: 36342579
  45. Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 2016; 65(8): 1049-61. doi: 10.1016/j.metabol.2016.02.014 PMID: 26997538
  46. Yang W, Shao F, Wang J, et al. Ethyl acetate extract from Artemisia argyi prevents liver damage in ConA-induced immunological liver injury mice via Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways. Molecules 2022; 27(22): 7883. doi: 10.3390/molecules27227883
  47. Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol 2007; 45(11): 2179-205. doi: 10.1016/j.fct.2007.05.015 PMID: 17698276
  48. Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: A review. Phytother Res 2021; 35(10): 5352-64. doi: 10.1002/ptr.7144 PMID: 34101925
  49. Jagtap S, Meganathan K, Wagh V, Winkler J, Hescheler J, Sachinidis A. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr Med Chem 2009; 16(12): 1451-62. doi: 10.2174/092986709787909578 PMID: 19355899
  50. Alam S, Mohammad T, Padder RA, Hassan MI, Husain M. Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade. J Cell Biochem 2022; 123(2): 259-74. doi: 10.1002/jcb.30162 PMID: 34636440
  51. Cano-Martínez A, Bautista-Pérez R, Castrejón-Téllez V, et al. Resveratrol and quercetin as regulators of inflammatory and purinergic receptors to attenuate liver damage associated to metabolic syndrome. Int J Mol Sci 2021; 22(16): 8939. doi: 10.3390/ijms22168939 PMID: 34445644
  52. Wu L, Zhang Q, Mo W, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci Rep 2017; 7(1): 9289. doi: 10.1038/s41598-017-09673-5 PMID: 28839277
  53. Zhang L, Zhang X, Zhang C, et al. Nobiletin promotes antioxidant and anti-inflammatory responses and elicits protection against ischemic stroke in vivo. Brain Res 2016; 1636: 130-41. doi: 10.1016/j.brainres.2016.02.013 PMID: 26874072
  54. Malik S, Bhatia J, Suchal K, et al. Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Exp Toxicol Pathol 2015; 67(7-8): 427-33. doi: 10.1016/j.etp.2015.04.008 PMID: 26002685
  55. Zhang L, Tian Y, Zhao P, Feng S, Han X, Li J. Network pharmacology analysis uncovers the effect on apoptotic pathway by Bu-Fei formula for COPD treatment. J Ethnopharmacol 2022; 289: 115022. doi: 10.1016/j.jep.2022.115022 PMID: 35074456
  56. Wu Y, Zhang W, Li M, Cao D, Yang X, Gong J. Nobiletin ameliorates ischemia–reperfusion injury by suppressing the function of Kupffer cells after liver transplantation in rats. Biomed Pharmacother 2017; 89: 732-41. doi: 10.1016/j.biopha.2017.02.087 PMID: 28273635
  57. Feng YY, Yan JY, Xia X, et al. Effect and mechanism of total flavonoids of Lichi Semen on CCl4-induced liver fibrosis in rats, and prediction of Q-marker. Zhongguo Zhongyao Zazhi 2020; 45(23): 5722-31. PMID: 33496112
  58. Devi KSP, Mishra D, Roy B, Ghosh SK, Maiti TK. Assessing the immunomodulatory role of heteroglycan in a tumor spheroid and macrophage co-culture model system. Carbohydr Polym 2015; 127: 1-10. doi: 10.1016/j.carbpol.2015.03.035 PMID: 25965450
  59. Simunkova M, Barbierikova Z, Jomova K, et al. Antioxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(II) ions: A ROS-scavenging activity, fenton reaction and DNA damage study. Int J Mol Sci 2021; 22(4): 1619. doi: 10.3390/ijms22041619 PMID: 33562744
  60. Imran M, Salehi B, Sharifi-Rad J, et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019; 24(12): 2277. doi: 10.3390/molecules24122277 PMID: 31248102
  61. Tie F, Ding J, Hu N, Dong Q, Chen Z, Wang H. Kaempferol and kaempferide attenuate oleic acid-induced lipid accumulation and oxidative stress in HepG2 cells. Int J Mol Sci 2021; 22(16): 8847. doi: 10.3390/ijms22168847 PMID: 34445549
  62. Li N, Yin L, Shang J, et al. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway. Biomed Pharmacother 2023; 165: 115113. doi: 10.1016/j.biopha.2023.115113 PMID: 37418974
  63. Moradzadeh M, Tabarraei A, Sadeghnia HR, et al. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes. J Cell Biochem 2018; 119(2): 2288-97. doi: 10.1002/jcb.26391 PMID: 28865123
  64. BinMowyna MN, AlFaris NA. Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. Pharm Biol 2021; 59(1): 144-54. doi: 10.1080/13880209.2021.1877734 PMID: 33556299
  65. Xiao X, Hu Q, Deng X, et al. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacol Res 2022; 175: 106005. doi: 10.1016/j.phrs.2021.106005 PMID: 34843960
  66. Cao R, Cao C, Hu X, et al. Kaempferol attenuates carbon tetrachloride (CCl4)-induced hepatic fibrosis by promoting ASIC1a degradation and suppression of the ASIC1a-mediated ERS. Phytomedicine 2023; 121: 155125. doi: 10.1016/j.phymed.2023.155125 PMID: 37820466
  67. Wen R, Dong X, Zhuang H, et al. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine 2023; 116: 154881. doi: 10.1016/j.phymed.2023.154881 PMID: 37209607
  68. Singh S, Meena A, Luqman S. Baicalin mediated regulation of key signaling pathways in cancer. Pharmacol Res 2021; 164: 105387. doi: 10.1016/j.phrs.2020.105387 PMID: 33352232
  69. AlSaad AMS, Mohany M, Almalki MS, et al. Baicalein neutralizes hypercholesterolemia-induced aggravation of oxidative injury in rats. Int J Med Sci 2020; 17(9): 1156-66. doi: 10.7150/ijms.46108 PMID: 32547311
  70. Zhang C, Chang C, Gao H, Wang Q, Zhang F, Xu C. MiR-429 regulates rat liver regeneration and hepatocyte proliferation by targeting JUN/MYC/BCL2/CCND1 signaling pathway. Cell Signal 2018; 50: 80-9. doi: 10.1016/j.cellsig.2018.06.013 PMID: 29958992
  71. Qi J, Li J, Bie B, et al. miR-3,178 contributes to the therapeutic action of baicalein against hepatocellular carcinoma cells via modulating HDAC10. Phytother Res 2023; 37(1): 295-309. doi: 10.1002/ptr.7613 PMID: 36070933
  72. Li P, Zhang R, Wang M, et al. Baicalein prevents fructose-induced hepatic steatosis in rats: In the regulation of fatty acid de novo synthesis, fatty acid elongation and fatty acid oxidation. Front Pharmacol 2022; 13: 917329. doi: 10.3389/fphar.2022.917329 PMID: 35847050
  73. Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res 2014; 74(24): 7161-7. doi: 10.1158/0008-5472.CAN-14-1446 PMID: 25477334
  74. Zhao Z, Li Y, Guo S, et al. Oryza sativa L. indica seed coat ameliorated concanavalin A-induced acute hepatitis in mice via MDM2/p53 and PKCα/MAPK1 signaling pathways. Int J Mol Sci 2023; 24(19): 14503. doi: 10.3390/ijms241914503
  75. Lin H, Wang L, Liu Z, et al. Hepatic MDM2 causes metabolic associated fatty liver disease by blocking triglyceride-VLDL Secretion via ApoB degradation. Adv Sci (Weinh) 2022; 9(20): 2200742. doi: 10.1002/advs.202200742 PMID: 35524581

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers