Sesamol Loaded Silver Nanoparticles Gel Engineered for Wound Healing via Topical Delivery: Optimization In vitro and Ex vivo Evaluation


Cite item

Full Text

Abstract

Purpose:The current investigation involved the development and application of a topical treatment for wound healing for sesamol loaded into the silver nanoparticles (SML-AgNPs).

Methods:SML-AgNPs were produced through the application of microwave technique. The SML-AgNPs were further optimized utilizing a Box Behnken Design (BBD).

Results:The Opt-SML-AgNPs formulation that was optimized demonstrated a particle size of 160.49 ± 1.11 nm, a polydispersity index (PDI) of 0.241 ± 0.54, a zeta potential of -21.09 ± 0.88 mV, and an efficiency of 84.19 ± 1.19%. The morphology of the Opt-SML-AgNPs reveals a spherical structure. The Opt-SML-AgNPs exhibit a higher in vitro drug release rate as compared to the SML suspension. The Opt-SML-AgNPs were incorporated into the carbopol gel (Opt-SML-AgNPG) and evaluated for various parameters. The skin permeation investigation revealed a twofold increase for the Opt-SML-AgNPG formulation when compared to the SML-conventional gel formulation. This finding indicates a prolonged release pattern and an enhanced permeability profile. The Opt-SML-AgNPs formulation exhibited a higher level of antioxidant activity when compared to the SML solution which is beneficial for wound healing.

Conclusion:In conclusion, the Opt-SML-AgNPG exhibits considerable potential in effectively penetrating the deeper dermal layers. Therefore, it may be considered that they possess the potential to serve as a suitable nanocarrier to administer topical delivery in the context of treating skin-related illnesses.

About the authors

Hafiz Makeen

Department of Clinical Pharmacy, Pharmacy Practice Research Unit, College of Pharmacy, Jazan University

Email: info@benthamscience.net

Mohammed Albratty

Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. J Med Microbiol 2015; 64(4): 323-34. doi: 10.1099/jmm.0.000032 PMID: 25670813
  2. Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials (Basel) 2019; 12(16): 2540. doi: 10.3390/ma12162540 PMID: 31404974
  3. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci 2009; 122(18): 3209-13. doi: 10.1242/jcs.031187 PMID: 19726630
  4. Atkin L, Bućko Z, Montero EC, et al. Implementing TIMERS: The race against hard-to-heal wounds. J Wound Care 2019; 28 (Sup3a): S-S50. doi: 10.12968/jowc.2019.28.Sup3a.S1 PMID: 30835604
  5. Scialò F, Fernández-Ayala DJ, Sanz A. Role of mitochondrial reverse electron transport in ROS signaling: Potential roles in health and disease. Front Physiol 2017; 8: 428. doi: 10.3389/fphys.2017.00428 PMID: 28701960
  6. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78(2): 547-81. doi: 10.1152/physrev.1998.78.2.547 PMID: 9562038
  7. Rodriguez PG, Felix FN, Woodley DT, Shim EK. The role of oxygen in wound healing: A review of the literature. Dermatol Surg 2008; 34(9): 1159-69. doi: 10.1097/00042728-200809000-00001 PMID: 18513296
  8. Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018; 7(8): 98. doi: 10.3390/antiox7080098 PMID: 30042332
  9. Majdalawieh AF, Mansour ZR. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur J Pharmacol 2019; 855: 75-89. doi: 10.1016/j.ejphar.2019.05.008 PMID: 31063773
  10. Nija B, Rasheed A, Kottaimuthu A. Development, characterization, and pharmacological investigation of sesamol and thymol conjugates of mefenamic acid. J Evol Med Dent Sci 2020; 9(52): 3909-16. doi: 10.14260/jemds/2020/857
  11. Shenoy RR, Sudheendra AT, Nayak PG, Paul P, Kutty NG, Rao CM. Normal and delayed wound healing is improved by sesamol, an active constituent of Sesamum indicum (L.) in albino rats. J Ethnopharmacol 2011; 133(2): 608-12. doi: 10.1016/j.jep.2010.10.045 PMID: 21035533
  12. Liu F, Li X, Wang L, et al. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: An efficient strategy to accelerate diabetic wound healing. Int J Biol Macromol 2020; 149: 627-38. doi: 10.1016/j.ijbiomac.2020.01.277 PMID: 32004602
  13. Gourishetti K, Keni R, Nayak PG, et al. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats. Int J Nanomedicine 2020; 15: 9265-82. doi: 10.2147/IJN.S268941 PMID: 33262587
  14. Nair AB, Dalal P, Kadian V, et al. Formulation, characterization, anti-inflammatory and cytotoxicity study of sesamol-laden nanosponges. Nanomaterials (Basel) 2022; 12(23): 4211. doi: 10.3390/nano12234211 PMID: 36500833
  15. Lee NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol 2019; 10: 1153. doi: 10.3389/fphar.2019.01153
  16. Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: Their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol 2019; 103(7): 2913-35. doi: 10.1007/s00253-019-09675-5 PMID: 30778643
  17. Chinnasamy G, Chandrasekharan S, Koh TW, Bhatnagar S. Synthesis, characterization, antibacterial and wound healing efficacy of silver nanoparticles from Azadirachta indica. Front Microbiol 2021; 12: 611560. doi: 10.3389/fmicb.2021.611560 PMID: 33679635
  18. Ahmad A, Wei Y, Syed F, et al. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb Pathog 2017; 102: 133-42. doi: 10.1016/j.micpath.2016.11.030 PMID: 27916692
  19. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010; 49(11): 1603-16. doi: 10.1016/j.freeradbiomed.2010.09.006 PMID: 20840865
  20. Munteanu A, Florescu IP, Nitescu C. A modern method of treatment: The role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds. J Med Life 2016; 9(3): 306-15. PMID: 27974941
  21. Rybka M, Mazurek Ł, Konop M. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing-from experimental studies to clinical practice. Life (Basel) 2022; 13(1): 69. doi: 10.3390/life13010069 PMID: 36676019
  22. Badhwar R, Singh R, Popli H. Implementation of quality by design (QbD) approach in development of QCT-SMEDDS with combination of AgNPs for diabetic foot ulcer management. Indian J Pharm Educ Res 2021; 55: 1207-23. doi: 10.5530/ijper.55.4.220
  23. Lakkim V, Reddy MC, Lekkala VVV, Lebaka VR, Korivi M, Lomada D. Antioxidant efficacy of green-synthesized silver nanoparticles promotes wound healing in mice. Pharmaceutics 2023; 15(5): 1517. doi: 10.3390/pharmaceutics15051517 PMID: 37242759
  24. Barabadi H, Honary S, Ebrahimi P, Alizadeh A, Naghibi F, Saravanan M. Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorgd Nano-Metal Chem 2019; 49(2): 33-43. doi: 10.1080/24701556.2019.1583251
  25. Honary S, Barabadi H, Ebrahimi P, Naghibi F, Alizadeh A. Development and optimization of biometal nanoparticles by using mathematical methodology: A microbial approach. J Nano Res 2015; 30: 106-15. doi: 10.4028/ href='www.scientific.net/JNanoR.30.106' target='_blank'>www.scientific.net/JNanoR.30.106
  26. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008; 76(5): 965-77. doi: 10.1016/j.talanta.2008.05.019 PMID: 18761143
  27. Alam A, Foudah AI, Alqarni MH, Yusufoglu HS. Microwave-assisted and chemically tailored chlorogenic acid-functionalized silver nanoparticles of Citrus sinensis in gel matrix aiding QbD design for the treatment of acne. J Cosmet Dermatol 2023; 22(5): 1613-27. doi: 10.1111/jocd.15611 PMID: 36606381
  28. Bisht D, Verma D, Mirza MA, Anwer MK, Iqbal Z. Development of ethosomal gel of ranolazine for improved topical delivery: In vitro and ex vivo evaluation. J Mol Liq 2017; 225: 475-81. doi: 10.1016/j.molliq.2016.11.114
  29. Qizilbash FF, Ashhar MU. Thymoquinone-enriched naringenin-loaded nanostructured lipid carrier for brain delivery via nasal route: In vitro prospect and in vivo therapeutic efficacy for the treatment of depression. Pharmaceutics 2022; 14(3): 656. doi: 10.3390/pharmaceutics14030656
  30. Anjum F, Zakir F, Verma D, et al. Exploration of nanoethosomal transgel of naproxen sodium for the treatment of arthritis. Curr Drug Deliv 2020; 17(10): 885-97. doi: 10.2174/1567201817666200724170203 PMID: 32713340
  31. Jahan S, Aquil M, Ahad A, et al. Nanostructured lipid carrier for transdermal gliclazide delivery: Development and optimization by Box-Behnken design. Inorg Nano-Met Chem 2022; 1-14. doi: 10.1080/24701556.2021.2025097
  32. Sultana N, Ali A, Waheed A, et al. Dissolving microneedle transdermal patch loaded with Risedronate sodium and Ursolic acid bipartite nanotransfersomes to combat osteoporosis: Optimization, characterization, in vitro and ex vivo assessment. Int J Pharm 2023; 644: 123335. doi: 10.1016/j.ijpharm.2023.123335 PMID: 37597597
  33. Ghazwani M, Hani U, Alqarni MH, Alam A. Development and characterization of methyl-anthranilate-loaded silver nanoparticles: A phytocosmetic sunscreen gel for UV protection. Pharmaceutics 2023; 15(5): 1434. doi: 10.3390/pharmaceutics15051434 PMID: 37242676
  34. Aygün A, Özdemir S, Gülcan M, Yalçın MS, Uçar M, Şen F. Characterization and antioxidant-antimicrobial activity of silver nanoparticles synthesized using Punica granatum extract. Int J Environ Sci Technol 2022; 19(4): 2781-8. doi: 10.1007/s13762-021-03246-w
  35. Ali A, Aqil M, Imam SS, et al. Formulation and evaluation of embelin loaded nanoliposomes: Optimization, in vitro and ex vivo evaluation. J Drug Deliv Sci Technol 2022; 72: 103414. doi: 10.1016/j.jddst.2022.103414
  36. Mirza MA, Ahmad S, Mallick MN, Manzoor N, Talegaonkar S, Iqbal Z. Development of a novel synergistic thermosensitive gel for vaginal candidiasis: An in vitro, in vivo evaluation. Colloids Surf B Biointerfaces 2013; 103: 275-82. doi: 10.1016/j.colsurfb.2012.10.038 PMID: 23201748
  37. Siddiqui A, Jain P, Alex TS, et al. Investigation of a minocycline-loaded nanoemulgel for the treatment of acne rosacea. Pharmaceutics 2022; 14(11): 2322. doi: 10.3390/pharmaceutics14112322 PMID: 36365140
  38. Chawla V, Saraf SA. Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac. Colloids Surf B Biointerfaces 2012; 92: 293-8. doi: 10.1016/j.colsurfb.2011.12.006 PMID: 22221454
  39. Zakir F, Ahmad A, Farooq U, et al. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine (Lond) 2020; 15(12): 1167-87. doi: 10.2217/nnm-2020-0079 PMID: 32370601
  40. Tafuro G, Costantini A, Baratto G, Francescato S, Busata L, Semenzato A. Characterization of polysaccharidic associations for cosmetic use: Rheology and texture analysis. Cosmetics 2021; 8(3): 62. doi: 10.3390/cosmetics8030062
  41. Fatima M, Monawwar S, Mohapatra S, et al. In silico drug screening based development of novel formulations for onychomycosis management. Gels 2021; 7(4): 221. doi: 10.3390/gels7040221 PMID: 34842710
  42. Khan R, Mirza MA, Aqil M, et al. A pharmaco-technical investigation of thymoquinone and peat-sourced fulvic acid nanoemulgel: A combination therapy. Gels 2022; 8(11): 733. doi: 10.3390/gels8110733 PMID: 36354641
  43. Al Abood RM, Talegaonkar S, Tariq M, Ahmad FJ. Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. Colloids Surf B Biointerfaces 2013; 101: 143-51. doi: 10.1016/j.colsurfb.2012.06.015 PMID: 22796784
  44. Manogaran Y, Porwal O, Shanmugavelu S, et al. Antimicrobial activity of new synthetic derivative of sesamol and sesamum indicum seeds extract against meningitis causing bacteria. J Pharm Negat Results 2022; 13: 2241-9. doi: 10.47750/PNR.2022.13.S04.278
  45. Sah A, Aggarwal G, Jain GK, et al. Design and development of a topical nanogel formulation comprising of a unani medicinal agent for the management of pain. Gels 2023; 9(10): 794. doi: 10.3390/gels9100794 PMID: 37888367
  46. Bamsaoud SF, Basuliman MM, Bin-Hameed EA, Balakhm SM, Alkalali AS. The effect of volume and concentration of AgNO3 aqueous solutions on silver nanoparticles synthesized using Ziziphus Spina–Christi leaf extract and their antibacterial activity. J Phys Conf Ser 2021; 1900(1): 012005. doi: 10.1088/1742-6596/1900/1/012005
  47. Jalab J, Abdelwahed W, Kitaz A, Al-Kayali R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon 2021; 7(9): e08033. doi: 10.1016/j.heliyon.2021.e08033 PMID: 34611564
  48. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A. Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E 2005; 27(1-2): 104-12. doi: 10.1016/j.physe.2004.10.014
  49. Sobczak-Kupiec A, Malina D, Wzorek Z, Zimowska M. Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Lett 2011; 6(8): 656-60. doi: 10.1049/mnl.2011.0152
  50. Bonnia NN, Rani MAA, Fairuzi AA. Study on parameters optimization of silver nanoparticles biosynthesized using aqueous extract of Imperata cylindrica. Desalination Water Treat 2020; 174: 186-95. doi: 10.5004/dwt.2020.24856
  51. Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 2016; 6(3): 399-408. doi: 10.1007/s13204-015-0449-z
  52. Akombaetwa N, Ilangala AB, Thom L, Memvanga PB, Witika BA, Buya AB. Current advances in lipid nanosystems intended for topical and transdermal drug delivery applications. Pharmaceutics 2023; 15(2): 656. doi: 10.3390/pharmaceutics15020656 PMID: 36839978
  53. Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 2016; 10(5): 054107. doi: 10.1063/1.4962992 PMID: 27703593
  54. Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun 2020; 11(1): 2337. doi: 10.1038/s41467-020-15889-3 PMID: 32393750
  55. Fitzmaurice SD, Sivamani RK, Isseroff RR. Antioxidant therapies for wound healing: A clinical guide to currently commercially available products. Skin Pharmacol Physiol 2011; 24(3): 113-26. doi: 10.1159/000322643 PMID: 21242718
  56. Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 2022; 17(3): 353-84. doi: 10.1016/j.ajps.2022.01.001 PMID: 35782328
  57. Sallam KI, Abd-Elghany SM, Imre K, et al. Ensuring safety and improving keeping quality of meatballs by addition of sesame oil and sesamol as natural antimicrobial and antioxidant agents. Food Microbiol 2021; 99: 103834. doi: 10.1016/j.fm.2021.103834 PMID: 34119118
  58. Li Z, Wu M, Yan H, et al. Antibacterial effect and possible mechanism of sesamol against foodborne pathogens. Foods 2024; 13(3): 435. doi: 10.3390/foods13030435
  59. Bilal M, Rasheed T, Iqbal HMN, Li C, Hu H, Zhang X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 2017; 105(Pt 1): 393-400. doi: 10.1016/j.ijbiomac.2017.07.047 PMID: 28705499
  60. Giudice PD. Skin infections caused by Staphylococcus aureus. Acta Derm Venereol 2020; 100(9): adv00110.
  61. Wu M, Dong Q, Song X, et al. Effective combination of nisin and sesamol against Listeria monocytogenes. Lebensm Wiss Technol 2023; 176: 114546. doi: 10.1016/j.lwt.2023.114546
  62. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 2016; 7: 1831. doi: 10.3389/fmicb.2016.01831 PMID: 27899918
  63. Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. The role of antioxidants on wound healing: A review of the current evidence. J Clin Med 2021; 10(16): 3558. doi: 10.3390/jcm10163558 PMID: 34441854

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers