A New Frontier in Phytotherapy: Harnessing the Therapeutic Power of Medicinal Herb-derived miRNAs


Cite item

Full Text

Abstract

:Medicinal herbs have been utilized in the treatment of various pathologic conditions, including neoplasms, organ fibrosis, and diabetes mellitus. However, the precise pharmacological actions of plant miRNAs in animals remain to be fully elucidated, particularly in terms of their therapeutic efficacy and mechanism of action. In this review, some important miRNAs from foods and medicinal herbs are presented. Plant miRNAs exhibit a range of pharmacological properties, such as anti-cancer, anti-fibrosis, anti-viral, anti-inflammatory effects, and neuromodulation, among others. These results have not only demonstrated a cross-species regulatory effect, but also suggested that the miRNAs from medicinal herbs are their bioactive components. This shows a promising prospect for plant miRNAs to be used as drugs. Here, the pharmacological properties of plant miRNAs and their underlying mechanisms have been highlighted, which can provide new insights for clarifying the therapeutic mechanisms of medicinal herbs and suggest a new way for developing therapeutic drugs.

About the authors

Ya-long Feng

Department of Life Science, Xianyang Normal University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Xiaokaiti Y, Li X. Natural product regulates autophagy in cancer. Adv Exp Med Biol 2020; 1207: 709-24. doi: 10.1007/978-981-15-4272-5_53 PMID: 32671788
  2. Kashyap D, Tuli HS, Yerer MB, et al. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin Cancer Biol 2021; 69: 5-23. doi: 10.1016/j.semcancer.2019.08.014 PMID: 31421264
  3. Sflakidou E, Leonidis G, Foroglou E, Siokatas C, Sarli V. Recent advances in natural product-based hybrids as anti-cancer agents. Molecules 2022; 27(19): 6632. doi: 10.3390/molecules27196632 PMID: 36235168
  4. Hasan M, Paul NC, Paul SK, et al. Natural product-based potential therapeutic interventions of pulmonary fibrosis. Molecules 2022; 27(5): 1481. doi: 10.3390/molecules27051481 PMID: 35268581
  5. Li JZ, Chen N, Ma N, Li MR. Mechanism and progress of natural products in the treatment of NAFLD-related fibrosis. Molecules 2023; 28(23): 7936. doi: 10.3390/molecules28237936 PMID: 38067665
  6. Wang L, Li S, Yao Y, Yin W, Ye T. The role of natural products in the prevention and treatment of pulmonary fibrosis: A review. Food Funct 2021; 12(3): 990-1007. doi: 10.1039/D0FO03001E PMID: 33459740
  7. Moudgil KD, Venkatesha SH. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. Int J Mol Sci 2022; 24(1): 95. doi: 10.3390/ijms24010095 PMID: 36613560
  8. Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine 2023; 115: 154824. doi: 10.1016/j.phymed.2023.154824 PMID: 37119762
  9. Chen CY, Tsai YF, Chang WY, Yang SC, Hwang TL. Marine natural product inhibitors of neutrophil-associated inflammation. Mar Drugs 2016; 14(8): 141. doi: 10.3390/md14080141 PMID: 27472345
  10. Li J, Cai Z, Li XW. Natural product-inspired targeted protein degraders: Advances and perspectives. J Med Chem 2022; 65(20): 13533-60. doi: 10.1021/acs.jmedchem.2c01223
  11. Feng Y, Wang W, Ning Y, Chen H, Liu P. Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy. Biomed Pharmacother 2021; 139: 111386. doi: 10.1016/j.biopha.2021.111386 PMID: 34243594
  12. Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237: 108169. doi: 10.1016/j.pharmthera.2022.108169 PMID: 35306111
  13. Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2020; 40(1): 54-78. doi: 10.1002/med.21596 PMID: 31131921
  14. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83(3): 770-803. doi: 10.1021/acs.jnatprod.9b01285 PMID: 32162523
  15. Locke FL, Rossi JM, Neelapu SS, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv 2020; 4(19): 4898-911. doi: 10.1182/bloodadvances.2020002394 PMID: 33035333
  16. Khare T, Palakurthi SS, Shah BM, Palakurthi S, Khare S. Natural product-based nanomedicine in treatment of inflammatory bowel disease. Int J Mol Sci 2020; 21(11): 3956. doi: 10.3390/ijms21113956 PMID: 32486445
  17. Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14: 1196016. doi: 10.3389/fimmu.2023.1196016 PMID: 37215100
  18. Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Biological and pharmacological effects of gamma-oryzanol: An updated review of the molecular mechanisms. Curr Pharm Des 2021; 27(19): 2299-316. doi: 10.2174/1381612826666201102101428 PMID: 33138751
  19. Cheng J, Li J, Xiong RG, et al. Effects and mechanisms of anti-diabetic dietary natural products: An updated review. Food Funct 2024; 15(4): 1758-78. doi: 10.1039/D3FO04505F PMID: 38240135
  20. Ramachandran V, v IK, hr KK, Tiwari R, Tiwari G. Biochanin-A: A bioactive natural product with versatile therapeutic perspectives. Curr Drug Res Rev 2022; 14(3): 225-38. doi: 10.2174/2589977514666220509201804 PMID: 35579127
  21. Pinela J, Dias MI, Pereira C, Alonso-Esteban JI. Antioxidant activity of foods and natural products. Molecules 2024; 29(8): 1814. doi: 10.3390/molecules29081814 PMID: 38675634
  22. Hill M, Tran N. miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech 2021; 14(4): dmm047662. doi: 10.1242/dmm.047662 PMID: 33973623
  23. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform 2019; 20(5): 1836-52. doi: 10.1093/bib/bby054 PMID: 29982332
  24. Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet 2022; 38(6): 613-26. doi: 10.1016/j.tig.2022.02.006 PMID: 35303998
  25. Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 2021; 76: 120-31. doi: 10.1016/j.semcancer.2021.05.004 PMID: 33979676
  26. Ghafouri-Fard S, Shoorei H, Taheri M. miRNA profile in ovarian cancer. Exp Mol Pathol 2020; 113: 104381. doi: 10.1016/j.yexmp.2020.104381 PMID: 31954715
  27. Sumaiya K, Ponnusamy T, Natarajaseenivasan K, Shanmughapriya S. Cardiac metabolism and miRNA interference. Int J Mol Sci 2022; 24(1): 50. doi: 10.3390/ijms24010050 PMID: 36613495
  28. Kabekkodu SP, Shukla V, Varghese VK, D’ Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93(4): 1955-86. doi: 10.1111/brv.12428 PMID: 29797774
  29. Bernardo BC, Ooi JYY, Lin RCY, McMullen JR. miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Med Chem 2015; 7(13): 1771-92. doi: 10.4155/fmc.15.107 PMID: 26399457
  30. Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as biomarkers and therapeutic targets for cancer. Genes (Basel) 2023; 14(7): 1375. doi: 10.3390/genes14071375 PMID: 37510280
  31. Shao T, Wang G, Chen H, et al. Survey of miRNA-miRNA cooperative regulation principles across cancer types. Brief Bioinform 2019; 20(5): 1621-38. doi: 10.1093/bib/bby038 PMID: 29800060
  32. Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother 2021; 138: 111528. doi: 10.1016/j.biopha.2021.111528 PMID: 33770669
  33. Budakoti M, Panwar AS, Molpa D, et al. Micro-RNA: The darkhorse of cancer. Cell Signal 2021; 83: 109995. doi: 10.1016/j.cellsig.2021.109995 PMID: 33785398
  34. Huang X, Zhu X, Yu Y, et al. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2021; 501: 66-82. doi: 10.1016/j.canlet.2020.12.025 PMID: 33385486
  35. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci 2019; 20(24): 6249. doi: 10.3390/ijms20246249 PMID: 31835747
  36. Khan A, Ahmed E, Elareer N, Junejo K, Steinhoff M, Uddin S. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells 2019; 8(8): 840. doi: 10.3390/cells8080840 PMID: 31530793
  37. Van Roosbroeck K, Calin GA. MicroRNAs in chronic lymphocytic leukemia: miRacle or miRage for prognosis and targeted therapies? Semin Oncol 2016; 43(2): 209-14. doi: 10.1053/j.seminoncol.2016.02.015 PMID: 27040698
  38. Xie W, Melzig MF. The stability of medicinal plant microRNAs in the herb preparation process. Molecules 2018; 23(4): 919. doi: 10.3390/molecules23040919 PMID: 29659501
  39. Dever JT, Kemp MQ, Thompson AL, et al. Survival and diversity of human homologous dietary microRNAs in conventionally cooked top sirloin and dried bovine tissue extracts. PLoS One 2015; 10(9): e0138275. doi: 10.1371/journal.pone.0138275 PMID: 26394052
  40. Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: Influence of diet and detectability in gastrointestinal tract-proof-of-principle study. Mol Nutr Food Res 2019; 63(2): 1800076. doi: 10.1002/mnfr.201800076 PMID: 30378765
  41. Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res 2015; 59(10): 1962-72. doi: 10.1002/mnfr.201500137 PMID: 26147655
  42. Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: A review. J Agric Food Chem 2021; 69(48): 14372-86. doi: 10.1021/acs.jafc.1c04737 PMID: 34813309
  43. Chen T, Ma F, Peng Y, et al. Plant miR167e-5p promotes 3T3-L1 adipocyte adipogenesis by targeting β-catenin. In Vitro Cell Dev Biol Anim 2022; 58(6): 471-9. doi: 10.1007/s11626-022-00702-w PMID: 35829897
  44. Yang L, Feng H. Cross-kingdom regulation by plant-derived miRNAs in mammalian systems. Animal Model Exp Med 2023; 6(6): 518-25. doi: 10.1002/ame2.12358 PMID: 38064180
  45. Li Y, Teng Z, Zhao D. Plant-derived cross-kingdom gene regulation benefits human health. Trends Plant Sci 2023; 28(6): 626-9. doi: 10.1016/j.tplants.2023.03.004 PMID: 37080836
  46. Xu T, Zhu Y, Lin Z, et al. Evidence of cross-kingdom gene regulation by plant microRNAs and possible reasons for inconsistencies. J Agric Food Chem 2024; 72(9): 4564-73. doi: 10.1021/acs.jafc.3c09097 PMID: 38391237
  47. Samad AFA, Kamaroddin MF, Sajad M. Cross-kingdom regulation by plant microRNAs provides novel insight into gene regulation. Adv Nutr 2021; 12(1): 197-211. doi: 10.1093/advances/nmaa095 PMID: 32862223
  48. Lukasik A, Zielenkiewicz P. Plant microRNAs-novel players in natural medicine? Int J Mol Sci 2016; 18(1): 9. doi: 10.3390/ijms18010009 PMID: 28025496
  49. He X, Wang Y, Fan X, et al. A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor III. J Hepatol 2020; 72(3): 519-27. doi: 10.1016/j.jhep.2019.10.029 PMID: 31738999
  50. Zhang S, Sang X, Hou D, et al. Plant-derived RNAi therapeutics: A strategic inhibitor of HBsAg. Biomaterials 2019; 210: 83-93. doi: 10.1016/j.biomaterials.2019.04.033 PMID: 31078314
  51. Shu J, Chiang K, Zempleni J, Cui J. Computational characterization of exogenous microRNAs that can be transferred into human circulation. PLoS One 2015; 10(11): e0140587. doi: 10.1371/journal.pone.0140587 PMID: 26528912
  52. Lukasik A, Brzozowska I, Zielenkiewicz U, Zielenkiewicz P. Detection of plant miRNAs abundance in human breast milk. Int J Mol Sci 2017; 19(1): 37. doi: 10.3390/ijms19010037 PMID: 29295476
  53. Zhang Y, Wiggins BE, Lawrence C, Petrick J, Ivashuta S, Heck G. Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics 2012; 13(1): 381. doi: 10.1186/1471-2164-13-381 PMID: 22873950
  54. Huang F, Du J, Liang Z, et al. Large-scale analysis of small RNAs derived from traditional Chinese herbs in human tissues. Sci China Life Sci 2019; 62(3): 321-32. doi: 10.1007/s11427-018-9323-5 PMID: 30238279
  55. Zhao Q, Liu Y, Zhang N, et al. Evidence for plant-derived xenomiRs based on a large-scale analysis of public small RNA sequencing data from human samples. PLoS One 2018; 13(6): e0187519. doi: 10.1371/journal.pone.0187519 PMID: 29949574
  56. Koupenova M, Mick E, Corkrey HA, et al. Pollen-derived RNAs are found in the human circulation. iScience 2019; 19: 916-26. doi: 10.1016/j.isci.2019.08.035 PMID: 31518900
  57. Li Q, Lai Q, He C, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res 2019; 38(1): 334. doi: 10.1186/s13046-019-1330-9 PMID: 31370857
  58. Lan D, Jin X, Li M, He L. The expression and clinical significance of signal transducer and activator of transcription 3, tumor necrosis factor α induced protein 8-like 2, and runt-related transcription factor 1 in breast cancer patients. Gland Surg 2021; 10(3): 1125-34. doi: 10.21037/gs-21-108 PMID: 33842256
  59. Xie W, Adolf J, Melzig MF. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS One 2017; 12(11): e0187776. doi: 10.1371/journal.pone.0187776 PMID: 29112983
  60. Wei Z, Xia J, Li J, et al. SIRT1 promotes glucolipid metabolic conversion to facilitate tumor development in colorectal carcinoma. Int J Biol Sci 2023; 19(6): 1925-40. doi: 10.7150/ijbs.76704 PMID: 37063423
  61. Zhang L, Kang J, Xin B, Cao W. NDRG2 inhibition of glycolysis in liver tumor cells is regulated by SIRT1. J Gastrointest Oncol 2023; 14(2): 563-71. doi: 10.21037/jgo-23-149 PMID: 37201050
  62. Plotnik JP, Richardson AE, Yang H, et al. Inhibition of MALT1 and BCL2 induces synergistic anti-tumor activity in models of B cell lymphoma. Mol Cancer Ther 2024; 23(7): 949-60. doi: 10.1158/1535-7163.MCT-23-0518 PMID: 38507740
  63. Cerón R, Martínez A, Ramos C, et al. Overexpression of BCL2, BCL6, VEGFR1 and TWIST1 in circulating tumor cells derived from patients with DLBCL decreases event-free survival. OncoTargets Ther 2022; 15: 1583-95. doi: 10.2147/OTT.S386562 PMID: 36606244
  64. Minutolo A, Potestà M, Gismondi A, et al. Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci Rep 2018; 8(1): 12413. doi: 10.1038/s41598-018-30718-w PMID: 30120339
  65. Yuan D, Fang Y, Chen W, et al. ZFP36 inhibits tumor progression of human prostate cancer by targeting CDK6 and oxidative stress. Oxid Med Cell Longev 2022; 2022: 1-24. doi: 10.1155/2022/3611540 PMID: 36111167
  66. Jia Y, Zhao LM, Bai HY, et al. The tumor-suppressive function of miR-1296-5p by targeting EGFR and CDK6 in gastric cancer. Biosci Rep 2019; 39(1): BSR20181556. doi: 10.1042/BSR20181556 PMID: 30530570
  67. Manvar T, Mangukia N, Patel S, Rawal R. Understanding the molecular mechanisms of betel miRNAs on human health. MicroRNA 2022; 11(1): 45-56. doi: 10.2174/2211536611666220318142031 PMID: 35307000
  68. Sánchez-Romo D, Hernández-Vásquez CI, Pereyra-Alférez B, García-García JH. Identification of potential target genes in Homo sapiens, by miRNA of Triticum aestivum: A cross kingdom computational approach. Noncoding RNA Res 2022; 7(2): 89-97. doi: 10.1016/j.ncrna.2022.03.002 PMID: 35387280
  69. Xu X, Liu Z, Tian F, Xu J, Chen Y. Clinical significance of transcription factor 7 (TCF7) as a prognostic factor in gastric cancer. Med Sci Monit 2019; 25: 3957-63. doi: 10.12659/MSM.913913 PMID: 31133633
  70. Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 2016; 26(2): 217-28. doi: 10.1038/cr.2016.13 PMID: 26794868
  71. Bhadresha K, Patel M, Brahmbhatt J, Jain N, Rawal R. Targeting bone metastases signaling pathway using Moringa oleifera seed nutri-miRs: A cross kingdom approach. Nutr Cancer 2022; 74(7): 2522-39. doi: 10.1080/01635581.2021.2001547 PMID: 34751606
  72. Zhao J, Qi YF, Yu YR. STAT3: A key regulator in liver fibrosis. Ann Hepatol 2021; 21: 100224. doi: 10.1016/j.aohep.2020.06.010 PMID: 32702499
  73. Bala S, Zhuang Y, Nagesh PT, et al. Therapeutic inhibition of miR-155 attenuates liver fibrosis via STAT3 signaling. Mol Ther Nucleic Acids 2023; 33: 413-27. doi: 10.1016/j.omtn.2023.07.012 PMID: 37547286
  74. Jiang H, Yang J, Li T, et al. JAK/STAT3 signaling in cardiac fibrosis: A promising therapeutic target. Front Pharmacol 2024; 15: 1336102. doi: 10.3389/fphar.2024.1336102 PMID: 38495094
  75. Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res 2021; 31(3): 247-58. doi: 10.1038/s41422-020-0389-3 PMID: 32801357
  76. Zhang T, Ma R, Li Z, et al. Nur77 alleviates cardiac fibrosis by upregulating GSK-3β transcription during aging. Eur J Pharmacol 2024; 965: 176290. doi: 10.1016/j.ejphar.2023.176290 PMID: 38158109
  77. Tang X, Tian J, Xie L, Ji Y. γ-catenin alleviates cardiac fibrosis through inhibiting phosphorylation of GSK-3β. J Biomed Res 2020; 34(1): 27. PMID: 31741464
  78. Yin J, Li Z, Zhang X, et al. Bufotalin attenuates pulmonary fibrosis via inhibiting Akt/GSK-3β/β-catenin signaling pathway. Eur J Pharmacol 2024; 964: 176293. doi: 10.1016/j.ejphar.2023.176293 PMID: 38158113
  79. Yu WY, Cai W, Ying HZ, Zhang WY, Zhang HH, Yu CH. Exogenous plant gma-miR-159a, identified by miRNA library functional screening, ameliorated hepatic stellate cell activation and inflammation via inhibiting GSK-3β-mediated pathways. J Inflamm Res 2021; 14: 2157-72. doi: 10.2147/JIR.S304828 PMID: 34079325
  80. Zhu H, Chang M, Wang Q, Chen J, Liu D, He W. Identifying the potential of miRNAs in Houttuynia cordata-derived exosome-like nanoparticles against respiratory RNA viruses. Int J Nanomedicine 2023; 18: 5983-6000. doi: 10.2147/IJN.S425173 PMID: 37901360
  81. Minutolo A, Potestà M, Roglia V, et al. Plant microRNAs from Moringa oleifera regulate immune response and HIV infection. Front Pharmacol 2021; 11: 620038. doi: 10.3389/fphar.2020.620038 PMID: 33643043
  82. Chi Y, Shi L, Lu S, et al. Inhibitory effect of Lonicera japonica-derived exosomal miR2911 on human papilloma virus. J Ethnopharmacol 2024; 318(Pt B): 116969. doi: 10.1016/j.jep.2023.116969 PMID: 37516391
  83. Qiu FS, Wang JF, Guo MY, et al. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother 2023; 165: 115007. doi: 10.1016/j.biopha.2023.115007 PMID: 37327587
  84. Zou M, Yang L, Niu L, et al. Baicalin ameliorates Mycoplasma gallisepticum-induced lung inflammation in chicken by inhibiting TLR6-mediated NF-κB signalling. Br Poult Sci 2021; 62(2): 199-210. doi: 10.1080/00071668.2020.1847251 PMID: 33252265
  85. Zou M, Yang W, Niu L, et al. Polydatin attenuates Mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway. Microb Pathog 2020; 149: 104552. doi: 10.1016/j.micpath.2020.104552 PMID: 33010363
  86. Choteau L, Vancraeyneste H, Le Roy D, et al. Role of TLR1, TLR2 and TLR6 in the modulation of intestinal inflammation and Candida albicans elimination. Gut Pathog 2017; 9(1): 9. doi: 10.1186/s13099-017-0158-0 PMID: 28289440
  87. Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Amri EZ, Riezu-Boj JI, Milagro FI. miR482f and miR482c-5p from edible plant-derived foods inhibit the expression of pro-inflammatory genes in human THP-1 macrophages. Front Nutr 2023; 10: 1287312. doi: 10.3389/fnut.2023.1287312 PMID: 38099184
  88. Yin L, Yan L, Yu Q, et al. Characterization of the microRNA profile of ginger exosome-like nanoparticles and their anti-inflammatory effects in intestinal caco-2 cells. J Agric Food Chem 2022; 70(15): 4725-34. doi: 10.1021/acs.jafc.1c07306 PMID: 35261246
  89. Cavalieri D, Rizzetto L, Tocci N, et al. Plant microRNAs as novel immunomodulatory agents. Sci Rep 2016; 6(1): 25761. doi: 10.1038/srep25761 PMID: 27167363
  90. Llorens-Martín M, Jurado J, Hernández F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014; 7: 46. PMID: 24904272
  91. Sharma S, Chauhan N, Paliwal S, Jain S, Verma K, Paliwal S. GSK-3β and its inhibitors in Alzheimer’s disease: A recent update. Mini Rev Med Chem 2022; 22(22): 2881-95. doi: 10.2174/1389557522666220420094317 PMID: 35450523
  92. Zhang Y, Huang N, Yan F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res 2018; 339: 57-65. doi: 10.1016/j.bbr.2017.11.015 PMID: 29158110
  93. Lu Z, Fu J, Wu G, et al. Neuroprotection and mechanism of gas-miR36-5p from Gastrodia elata in an Alzheimer’s disease model by regulating glycogen synthase kinase-3β. Int J Mol Sci 2023; 24(24): 17295. doi: 10.3390/ijms242417295
  94. Avsar B, Zhao Y, Li W, Lukiw WJ. Atropa belladonna expresses a microRNA (aba-miRNA-9497) highly homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); Both miRNAs target the 3′-Untranslated region (3′-UTR) of the mRNA encoding the neurologically relevant, zinc-finger transcription factor ZNF-691. Cell Mol Neurobiol 2020; 40(1): 179-88. doi: 10.1007/s10571-019-00729-w PMID: 31456135
  95. Huang H, Pham Q, Davis CD, Yu L, Wang TTY. Delineating effect of corn microRNAs and matrix, ingested as whole food, on gut microbiota in a rodent model. Food Sci Nutr 2020; 8(8): 4066-77. doi: 10.1002/fsn3.1672 PMID: 32884688
  96. Xu Q, Qin X, Zhang Y, et al. Plant miRNA bol-miR159 regulates gut microbiota composition in mice: In vivo evidence of the crosstalk between plant miRNAs and intestinal microbes. J Agric Food Chem 2023; 71(43): 16160-73. doi: 10.1021/acs.jafc.3c06104 PMID: 37862127
  97. Chen X, Wu R, Zhu Y, et al. Study on the inhibition of Mfn1 by plant-derived miR5338 mediating the treatment of BPH with rape bee pollen. BMC Complement Altern Med 2018; 18(1): 38. doi: 10.1186/s12906-018-2107-y PMID: 29382326
  98. Krishnatreya DB, Ray D, Baruah PM, et al. Identification of putative miRNAs from expressed sequence tags of Gnetum gnemon L. and their cross-kingdom targets. BioTechnologia 2021; 102(2): 179-95. doi: 10.5114/bta.2021.106525 PMID: 36606027
  99. Meng X, Jin W, Wu F. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination and infection virulence of Botrytis cinerea in vitro. Gene 2020; 759: 145002. doi: 10.1016/j.gene.2020.145002 PMID: 32726608
  100. Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev 2020; 154-155: 37-63. doi: 10.1016/j.addr.2020.06.002 PMID: 32526452
  101. Long WJ, Wu HL, Wang T, Dong MY, Chen LZ, Yu RQ. Fast identification of the geographical origin of Gastrodia elata using excitation-emission matrix fluorescence and chemometric methods. Spectrochim Acta A Mol Biomol Spectrosc 2021; 258: 119798. doi: 10.1016/j.saa.2021.119798 PMID: 33892304
  102. Ye X, Wang Y, Zhao J, et al. Identification and characterization of key chemical constituents in processed Gastrodia elata using UHPLC-MS/MS and chemometric methods. J Anal Methods Chem 2019; 2019: 1-10. doi: 10.1155/2019/4396201 PMID: 31772815
  103. Su Z, Yang Y, Chen S, Tang Z, Xu H. The processing methods, phytochemistry and pharmacology of Gastrodia elata Bl.: A comprehensive review. J Ethnopharmacol 2023; 314: 116467. Evid Based Complement Alternat Med 2023; 2023: 5606021.
  104. Wu YN, Wen SH, Zhang W, Yu SS, Yang K. Gastrodia elata BI.: A comprehensive review of its traditional use, botany, phytochemistry, pharmacology, and pharmacokinetics. Evid Based Complement Alternat Med 2023; 2023: 5606021.
  105. Liu Y, Gao J, Peng M, et al. A Review on central nervous system effects of gastrodin. Front Pharmacol 2018; 9: 24. doi: 10.3389/fphar.2018.00024 PMID: 29456504
  106. Yin H, Liu R, Bie L. Gastrodin ameliorates neuroinflammation in Alzheimer’s disease mice by inhibiting NF-κB signaling activation via PPARγ stimulation. Aging (Albany NY) 2024; 16(10): 8657-66. doi: 10.18632/aging.205831 PMID: 38752930
  107. Hu Y, Li C, Shen W. Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer’s disease. Neuropathology 2014; 34(4): 370-7. doi: 10.1111/neup.12115 PMID: 24661139
  108. Wang W, Wang Y, Wang F, et al. Gastrodin regulates the TLR4/TRAF6/NF-κB pathway to reduce neuroinflammation and microglial activation in an AD model. Phytomedicine 2024; 128: 155518. doi: 10.1016/j.phymed.2024.155518 PMID: 38552431
  109. Anand A, Khurana N, Kaur S, et al. The multifactorial role of vanillin in amelioration of aluminium chloride and D-galactose induced Alzheimer’s disease in mice. Eur J Pharmacol 2023; 954: 175832. doi: 10.1016/j.ejphar.2023.175832 PMID: 37329974
  110. Alrouji M, Yasmin S, Alhumaydhi FA, et al. Comprehensive spectroscopic and computational insight into the binding of vanillin with human transferrin: Targeting neuroinflammation in Alzheimer’s disease therapeutics. Front Pharmacol 2024; 15: 1397332. doi: 10.3389/fphar.2024.1397332 PMID: 38799161
  111. Anand A, Khurana N, Ali N, et al. Ameliorative effect of vanillin on scopolamine-induced dementia-like cognitive impairment in a mouse model. Front Neurosci 2022; 16: 1005972. doi: 10.3389/fnins.2022.1005972 PMID: 36408377
  112. Alahmari A. Blood-brain barrier overview: Structural and functional correlation. Neural Plast 2021; 2021: 1-10. doi: 10.1155/2021/6564585 PMID: 34912450
  113. Kaya M, Ahishali B. Basic physiology of the blood-brain barrier in health and disease: A brief overview. Tissue Barriers 2021; 9(1): 1840913. doi: 10.1080/21688370.2020.1840913 PMID: 33190576
  114. Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood– brain barrier: Structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8(1): 217. doi: 10.1038/s41392-023-01481-w PMID: 37231000
  115. Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17(1): 69. doi: 10.1186/s12987-020-00230-3 PMID: 33208141
  116. Stamp MEM, Halwes M, Nisbet D, Collins DJ. Breaking barriers: Exploring mechanisms behind opening the blood–brain barrier. Fluids Barriers CNS 2023; 20(1): 87. doi: 10.1186/s12987-023-00489-2 PMID: 38017530
  117. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: From physiology to disease and back. Physiol Rev 2019; 99(1): 21-78. doi: 10.1152/physrev.00050.2017 PMID: 30280653
  118. Lin Z, Sur S, Liu P, et al. Blood-brain barrier breakdown in relationship to Alzheimer and vascular disease. Ann Neurol 2021; 90(2): 227-38. doi: 10.1002/ana.26134 PMID: 34041783
  119. Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood–brain barrier. Nat Rev Drug Discov 2021; 20(5): 362-83. doi: 10.1038/s41573-021-00139-y PMID: 33649582
  120. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11): 1959-72. doi: 10.1038/jcbfm.2012.126 PMID: 22929442
  121. Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93. doi: 10.7150/thno.21254 PMID: 29556336
  122. Xiong B, Wang Y, Chen Y, et al. Strategies for structural modification of small molecules to improve blood-brain barrier penetration: A recent perspective. J Med Chem 2021; 64(18): 13152-73. doi: 10.1021/acs.jmedchem.1c00910 PMID: 34505508
  123. Meng F, Xi Y, Huang J, Ayers PW. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Sci Data 2021; 8(1): 289. doi: 10.1038/s41597-021-01069-5 PMID: 34716354
  124. Cornelissen FMG, Markert G, Deutsch G, et al. Explaining blood- brain barrier permeability of small molecules by integrated analysis of different transport mechanisms. J Med Chem 2023; 66(11): 7253-67. doi: 10.1021/acs.jmedchem.2c01824 PMID: 37217193
  125. Lu H, Zhang J, Cao Y, Wu S, Wei Y, Yin R. Advances in applications of artificial intelligence algorithms for cancer-related miRNA research. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53(2): 231-43. PMID: 38650448
  126. Parveen A, Mustafa SH, Yadav P, Kumar A. Applications of machine learning in miRNA discovery and target prediction. Curr Genomics 2020; 20(8): 537-44. doi: 10.2174/1389202921666200106111813 PMID: 32581642
  127. Azari H, Nazari E, Mohit R, et al. Machine learning algorithms reveal potential miRNAs biomarkers in gastric cancer. Sci Rep 2023; 13(1): 6147. doi: 10.1038/s41598-023-32332-x PMID: 37061507
  128. Gu T, Zhao X, Barbazuk WB, Lee JH. miTAR: A hybrid deep learning-based approach for predicting miRNA targets. BMC Bioinformatics 2021; 22(1): 96. doi: 10.1186/s12859-021-04026-6 PMID: 33639834
  129. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer 2020; 19(1): 145. doi: 10.1186/s12943-020-01258-7 PMID: 32972405
  130. Liu Y, Liao S, Bennett S, et al. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif 2021; 54(2): e12974. doi: 10.1111/cpr.12974 PMID: 33382511
  131. Ma J, Qin L, Li X. Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal 2020; 18(1): 33. doi: 10.1186/s12964-020-0527-z PMID: 32111215
  132. Hu YS, Han X, Liu XH. STAT3: A potential drug target for tumor and inflammation. Curr Top Med Chem 2019; 19(15): 1305-17. doi: 10.2174/1568026619666190620145052 PMID: 31218960
  133. Hashemi M, Abbaszadeh S, Rashidi M, et al. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. Environ Res 2023; 233: 116458. doi: 10.1016/j.envres.2023.116458 PMID: 37348629
  134. El-Tanani M, Al Khatib AO, Aladwan SM, Abuelhana A, McCarron PA, Tambuwala MM. Importance of STAT3 signalling in cancer, metastasis and therapeutic interventions. Cell Signal 2022; 92: 110275. doi: 10.1016/j.cellsig.2022.110275 PMID: 35122990
  135. Lee H, Jeong AJ, Ye SK. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep 2019; 52(7): 415-23. doi: 10.5483/BMBRep.2019.52.7.152 PMID: 31186087
  136. Laudisi F, Cherubini F, Monteleone G, Stolfi C. STAT3 interactors as potential therapeutic targets for cancer treatment. Int J Mol Sci 2018; 19(6): 1787. doi: 10.3390/ijms19061787 PMID: 29914167
  137. Zheng C, Huang L, Luo W, et al. Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice. Cell Death Dis 2019; 10(11): 848. doi: 10.1038/s41419-019-2085-0 PMID: 31699972
  138. Li Q, Cheng Y, Zhang Z, et al. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med 2022; 12(10): e1036. doi: 10.1002/ctm2.1036 PMID: 36178087
  139. Chen W, Yuan H, Cao W, et al. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Theranostics 2019; 9(14): 3980-91. doi: 10.7150/thno.32352 PMID: 31281526
  140. Jia Y, Wang Q, Liang M, Huang K. KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation. J Transl Med 2022; 20(1): 627. doi: 10.1186/s12967-022-03841-6 PMID: 36578083
  141. Damasceno LEA, Prado DS, Veras FP, et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine- tuning STAT3 activation. J Exp Med 2020; 217(10): e20190613. doi: 10.1084/jem.20190613 PMID: 32697823
  142. Paris AJ, Hayer KE, Oved JH, et al. STAT3–BDNF–TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat Cell Biol 2020; 22(10): 1197-210. doi: 10.1038/s41556-020-0569-x PMID: 32989251
  143. Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an important target for anticancer drug development. Front Pharmacol 2021; 12: 736323. doi: 10.3389/fphar.2021.736323 PMID: 34512363
  144. Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. Future J Pharm Sci 2022; 8(1): 24. doi: 10.1186/s43094-022-00413-9 PMID: 35382490
  145. Bhatnagar D, Ladhe S, Kumar D. Discerning the prospects of miRNAs as a multi-target therapeutic and diagnostic for Alzheimer’s disease. Mol Neurobiol 2023; 60(10): 5954-74. doi: 10.1007/s12035-023-03446-0 PMID: 37386272
  146. Gaál Z. Role of microRNAs in immune regulation with translational and clinical applications. Int J Mol Sci 2024; 25(3): 1942. doi: 10.3390/ijms25031942 PMID: 38339220
  147. Zhu S, Pan W, Qian Y. MicroRNA in immunity and autoimmunity. J Mol Med (Berl) 2013; 91(9): 1039-50. doi: 10.1007/s00109-013-1043-z PMID: 23636510
  148. Jia Y, Wei Y. Modulators of microRNA function in the immune system. Int J Mol Sci 2020; 21(7): 2357. doi: 10.3390/ijms21072357 PMID: 32235299
  149. Zhou X, Li X, Wu M. miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3(1): 14. doi: 10.1038/s41392-018-0006-9 PMID: 29844933
  150. Dasgupta I, Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc 2021; 4(1): 10. doi: 10.3390/mps4010010 PMID: 33498244
  151. Garreau M, Weidner J, Hamilton R, et al. Chemical modification patterns for microRNA therapeutic mimics: A structure-activity relationship (SAR) case-study on miR-200c. Nucleic Acids Res 2024; 52(6): 2792-807. doi: 10.1093/nar/gkae141 PMID: 38421619
  152. Liang C, Zou T, Zhang M, et al. MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer’s disease. Theranostics 2021; 11(9): 4103-21. doi: 10.7150/thno.53418 PMID: 33754051

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers