Elemene Injection Overcomes Paclitaxel Resistance in Breast Cancer through AR/RUNX1 Signal: Network Pharmacology and Experimental Validation


Cite item

Full Text

Abstract

Background:Paclitaxel (PTX) is a cornerstone chemotherapy for Breast Cancer (BC), yet its impact is limited by emerging resistance. Elemene Injection (EI) has shown potential in overcoming chemotherapy resistance. However, the efficacy by which EI restores PTX sensitivity in BC and the implicated molecular mechanism remain uncharted.

Methods:Network pharmacology and bioinformatic analysis were conducted to investigate the targets and mechanisms of EI in overcoming PTX resistance. A paclitaxel-resistant MCF-7 cell line (MCF-7PR) was established. The efficacy of EI and/or PTX in inhibiting cell viability was evaluated using sulforhodamine B assay, while cell proliferation was assessed using EdU staining. Furthermore, protein and gene expression analysis was performed through Western blotting and qPCR.

Results:The EI containing three active components exhibited a multifaceted impact by targeting an extensive repertoire of 122 potential molecular targets. By intersecting with 761 differentially expressed genes, we successfully identified 9 genes that displayed a direct association with resistance to PTX in BC, presenting promising potential as therapeutic targets for the EI to effectively counteract PTX resistance. Enrichment analysis indicated a significant correlation between these identified targets and critical biological processes, particularly DNA damage response and cell cycle regulation. This correlation was further substantiated through meticulous analysis of single-cell datasets. Molecular docking analysis revealed robust binding affinities between the active components of the EI and the identified molecular targets. Subsequently, in vitro experiments unequivocally demonstrated the dose- and time-dependent inhibitory effects of the EI on both PTX-resistant and sensitive BC cell lines, effectively mitigating the resistance phenotype associated with PTX administration. Furthermore, our findings have indicated EI to effectively suppress the protein expression levels of AR and RUNX1 in MCF-7 and MCF-7PR cells under PTX treatment, as well as downregulate the mRNA expression levels of stem-like properties’ markers, KLF4 and OCT4, in these cell lines.

Conclusion:Elemene Injection (EI) application has exhibited a significant capability to mitigate PTX resistance in BC, which has been achieved through targeted suppression of the AR/RUNX1 axis, revealing a key strategy to overcome chemotherapeutic resistance.

About the authors

Xidong Gu

Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University

Email: info@benthamscience.net

Leilai Xu

Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University

Email: info@benthamscience.net

Yuanyuan Fu

Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University

Email: info@benthamscience.net

Shuyao Fan

Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University

Email: info@benthamscience.net

Tianjian Huang

The First School of Clinical Medicine, Zhejiang Chinese Medical University

Email: info@benthamscience.net

Jiangting Yu

The First School of Clinical Medicine,, Zhejiang Chinese Medical University

Email: info@benthamscience.net

Jiaying Chen

The First School of Clinical Medicine,, Zhejiang Chinese Medical University

Email: info@benthamscience.net

Xinbing Sui

Department of Medical Oncology, School of Pharmacy,, The Affiliated Hospital of Hangzhou Normal University

Author for correspondence.
Email: info@benthamscience.net

Xiaohong Xie

Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49. doi: 10.3322/caac.21660 PMID: 33538338
  2. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet 2021; 397(10286): 1750-69. doi: 10.1016/S0140-6736(20)32381-3 PMID: 33812473
  3. Johnston SRD, Hegg R, Im SA, et al. Phase III, Randomized study of dual human epidermal growth factor receptor 2 (HER2) blockade with lapatinib plus trastuzumab in combination with an aromatase inhibitor in postmenopausal women with HER2-positive, hormone receptor–positive metastatic breast cancer: Updated results of alternative. J Clin Oncol 2021; 39(1): 79-89. doi: 10.1200/JCO.20.01894 PMID: 32822287
  4. Curigliano G, Dent R, Earle H, et al. Open questions, current challenges, and future perspectives in targeting human epidermal growth factor receptor 2-low breast cancer. ESMO Open 2024; 9(4): 102989. doi: 10.1016/j.esmoop.2024.102989 PMID: 38613914
  5. Rizzo A, Cusmai A, Acquafredda S, Rinaldi L, Palmiotti G. Ladiratuzumab vedotin for metastatic triple negative cancer: Preliminary results, key challenges, and clinical potential. Expert Opin Investig Drugs 2022; 31(6): 495-8. doi: 10.1080/13543784.2022.2042252 PMID: 35171746
  6. Guven DC, Sahin TK, Erul E, et al. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Mol Biosci 2022; 9: 1039121. doi: 10.3389/fmolb.2022.1039121 PMID: 36533070
  7. Rizzo A, Ricci AD, Lanotte L, et al. Immune-based combinations for metastatic triple negative breast cancer in clinical trials: Current knowledge and therapeutic prospects. Expert Opin Investig Drugs 2022; 31(6): 557-65. doi: 10.1080/13543784.2022.2009456 PMID: 34802383
  8. Rizzo A, Mollica V, Tateo V, et al. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study. Cancer Immunol Immunother 2023; 72(6): 1381-94. doi: 10.1007/s00262-023-03366-x PMID: 36695827
  9. Miles D, Gligorov J, André F, et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann Oncol 2021; 32(8): 994-1004. doi: 10.1016/j.annonc.2021.05.801 PMID: 34219000
  10. Rivera E, Gomez H. Chemotherapy resistance in metastatic breast cancer: The evolving role of ixabepilone. Breast Cancer Res 2010; 12(Suppl 2): S2. doi: 10.1186/bcr2573
  11. Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer 2013; 2013: 1-15. doi: 10.1155/2013/137414 PMID: 23864953
  12. Efferth T, Li PCH, Konkimalla VSB, Kaina B. From traditional Chinese medicine to rational cancer therapy. Trends Mol Med 2007; 13(8): 353-61. doi: 10.1016/j.molmed.2007.07.001 PMID: 17644431
  13. Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990-1997: Results of a follow-up national survey. JAMA 1998; 280(18): 1569-75. doi: 10.1001/jama.280.18.1569 PMID: 9820257
  14. Liu J, Zhang Y, Qu J, et al. β-elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer 2011; 11(1): 183. doi: 10.1186/1471-2407-11-183 PMID: 21595977
  15. Jiang X, Hidru TH, Zhang Z, Bai Y, Kong L, Li X. Evidence of elemene injection combined radiotherapy in lung cancer treatment among patients with brain metastases. Medicine 2017; 96(21): e6963. doi: 10.1097/MD.0000000000006963 PMID: 28538391
  16. Tan W, Lu J, Huang M, et al. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011; 6(1): 27. doi: 10.1186/1749-8546-6-27 PMID: 21777476
  17. Pan Y, Wang W, Huang S, et al. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. J Cell Mol Med 2019; 23(10): 6846-58. doi: 10.1111/jcmm.14568 PMID: 31343107
  18. Yao C, Jiang J, Tu Y, Ye S, Du H, Zhang Y. β-elemene reverses the drug resistance of A 549/DDP lung cancer cells by activating intracellular redox system, decreasing mitochondrial membrane potential and P-glycoprotein expression, and inducing apoptosis. Thorac Cancer 2014; 5(4): 304-12. doi: 10.1111/1759-7714.12093 PMID: 26767017
  19. Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  20. Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res 2023; 51(D1): D1257-62. doi: 10.1093/nar/gkac833 PMID: 36169237
  21. Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 2019; 47(W1): W357-64. doi: 10.1093/nar/gkz382 PMID: 31106366
  22. Bindea G, Mlecnik B, Hackl H, et al. ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009; 25(8): 1091-3. doi: 10.1093/bioinformatics/btp101 PMID: 19237447
  23. Yuan H, Yan M, Zhang G, et al. CancerSEA: A cancer single-cell state atlas. Nucleic Acids Res 2019; 47(D1): D900-8. doi: 10.1093/nar/gky939 PMID: 30329142
  24. Gupta P, Srivastava SK. Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models. BMC Med 2012; 10(1): 80. doi: 10.1186/1741-7015-10-80 PMID: 22824293
  25. Li F, Lu J, Liu J, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun 2017; 8(1): 1390. doi: 10.1038/s41467-017-01565-6 PMID: 29123088
  26. Li R, Moudgil T, Ross HJ, Hu HM. Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Differ 2005; 12(3): 292-303. doi: 10.1038/sj.cdd.4401554 PMID: 15711598
  27. Subramanian IV, Devineni S, Ghebre R, et al. AAV-P125A-endostatin and paclitaxel treatment increases endoreduplication in endothelial cells and inhibits metastasis of breast cancer. Gene Ther 2011; 18(2): 145-54. doi: 10.1038/gt.2010.118 PMID: 20844568
  28. Wu CH, Hong BH, Ho CT, Yen GC. Targeting cancer stem cells in breast cancer: Potential anticancer properties of 6-shogaol and pterostilbene. J Agric Food Chem 2015; 63(9): 2432-41. doi: 10.1021/acs.jafc.5b00002 PMID: 25686711
  29. Li QQ, Wang G, Reed E, Huang L, Cuff CF. Evaluation of cisplatin in combination with β-elemene as a regimen for prostate cancer chemotherapy. Basic Clin Pharmacol Toxicol 2010; 107(5): 868-76. doi: 10.1111/j.1742-7843.2010.00592.x PMID: 22545969
  30. Rui D, Xiaoyan C, Taixiang W, Guanjian L. Elemene for the treatment of lung cancer. Cochrane Syst Rev 2007; 4: CD6054.
  31. Zhou J, He LL, Ding XF, et al. Combinatorial antitumor effect of rapamycin and β-elemene in follicular thyroid cancer cells. BioMed Res Int 2016; 2016: 1-8. doi: 10.1155/2016/6723807 PMID: 27274989
  32. Zhang Y, Sun X, Nan N, et al. Elemene inhibits the migration and invasion of 4T1 murine breast cancer cells via heparanase. Mol Med Rep 2017; 16(1): 794-800. doi: 10.3892/mmr.2017.6638 PMID: 28560389
  33. Liu S, Li Q, Li G, et al. The mechanism of m6A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene. Cell Death Dis 2020; 11(11): 969. doi: 10.1038/s41419-020-03148-8 PMID: 33177491
  34. Zhang R, Pan T, Xiang Y, et al. β-elemene reverses the resistance of p53-deficient colorectal cancer cells to 5-fluorouracil by inducing pro-death autophagy and cyclin D3-dependent cycle arrest. Front Bioeng Biotechnol 2020; 8: 378. doi: 10.3389/fbioe.2020.00378 PMID: 32457882
  35. Zhang J, Zhang H, Yao YF, Zhong SL, Zhao JH, Tang JH. β-elemene reverses chemoresistance of breast cancer cells by reducing resistance transmission via exosomes. Cell Physiol Biochem 2015; 36(6): 2274-86. doi: 10.1159/000430191 PMID: 26279432
  36. Zhang J, Zhang H, Chen L, et al. β-elemene reverses chemoresistance of breast cancer via regulating MDR-related microRNA expression. Cell Physiol Biochem 2014; 34(6): 2027-37. doi: 10.1159/000366398 PMID: 25562151
  37. Hopkins AL. Network pharmacology: The next paradigm in drug discovery. Nat Chem Biol 2008; 4(11): 682-90. doi: 10.1038/nchembio.118 PMID: 18936753
  38. Wang N, Zheng Y, Gu J, et al. Network-pharmacology-based validation of TAMS/CXCL-1 as key mediator of XIAOPI formula preventing breast cancer development and metastasis. Sci Rep 2017; 7(1): 14513. doi: 10.1038/s41598-017-15030-3 PMID: 29109519
  39. Wang S, Wang H, Lu Y. Tianfoshen oral liquid: A CFDA approved clinical traditional Chinese medicine, normalizes major cellular pathways disordered during colorectal carcinogenesis. Oncotarget 2017; 8(9): 14549-69. doi: 10.18632/oncotarget.14675 PMID: 28099904
  40. Wang N, Yang B, Zhang X, et al. Network pharmacology-based validation of caveolin-1 as a key mediator of Ai Du Qing inhibition of drug resistance in breast cancer. Front Pharmacol 2018; 9: 1106. doi: 10.3389/fphar.2018.01106 PMID: 30333750
  41. Hassin O, Oren M. Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov 2023; 22(2): 127-44. doi: 10.1038/s41573-022-00571-8 PMID: 36216888
  42. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18(12): 773-89. doi: 10.1038/s41577-018-0066-7 PMID: 30254251
  43. Hu F, Song D, Yan Y, et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat Commun 2021; 12(1): 3651. doi: 10.1038/s41467-021-23923-1 PMID: 34131122
  44. Kitajima S, Yoshida A, Kohno S, et al. The RB–IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity. Oncogene 2017; 36(36): 5145-57. doi: 10.1038/onc.2017.124 PMID: 28481867
  45. Di L. The impact of carboxylesterases in drug metabolism and pharmacokinetics. Curr Drug Metab 2019; 20(2): 91-102. doi: 10.2174/1389200219666180821094502 PMID: 30129408
  46. Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223: 116128. doi: 10.1016/j.bcp.2024.116128 PMID: 38492781
  47. Ding F, Qiu C, Li W, et al. CNR1 may reverse progesterone-resistance of endometrial cancer through the ERK pathway. Biochem Biophys Res Commun 2021; 548: 148-54. doi: 10.1016/j.bbrc.2021.02.038 PMID: 33640608
  48. Huang R, Zhang J, Li M, et al. The role of Peroxisome Proliferator-activated Receptors (PPARs) in pan-cancer. PPAR Res 2020; 2020: 1-19. doi: 10.1155/2020/6527564 PMID: 33029111
  49. Massacci G, Perfetto L, Sacco F. The Cyclin-dependent kinase 1: More than a cell cycle regulator. Br J Cancer 2023; 129(11): 1707-16. doi: 10.1038/s41416-023-02468-8 PMID: 37898722
  50. Qin X, Guo H, Wang X, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol 2019; 20(1): 12. doi: 10.1186/s13059-018-1604-0 PMID: 30642385
  51. Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: Mechanisms and implications. NPJ Precis Oncol 2023; 7(1): 58. doi: 10.1038/s41698-023-00407-7 PMID: 37311884
  52. Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: Prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8(4): 253-67. doi: 10.1038/nrc2347 PMID: 18354415
  53. Fernández NB, Sosa SM, Roberts JT, et al. RUNX1 is regulated by androgen receptor to promote cancer stem markers and chemotherapy resistance in triple negative breast cancer. CELLS-BASEL 2023; 12(3): 444. doi: 10.3390/cells12030444
  54. Liu N, Meng QX, Wang GS. The relationship between the expression of amplified in breast cancer 1, androgen receptor and tamoxifen resistance in breast cancer. Zhonghua Yi Xue Za Zhi 2023; 103(20): 1553-9. PMID: 37246005
  55. Ali A, Creevey L, Hao Y, et al. Prosaposin activates the androgen receptor and potentiates resistance to endocrine treatment in breast cancer. Breast Cancer Res 2015; 17(1): 123. doi: 10.1186/s13058-015-0636-6 PMID: 26341737

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers