Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases
- Autores: Babbar R.1, Kaur A.1, Vanya 1, Arora R.1, Gupta J.2, Wal P.3, Tripathi A.4, Koparde A.5, Goyal P.6, Ramniwas S.7, Gulati M.8, Behl T.9
-
Afiliações:
- Chitkara College of Pharmacy, Chitkara University
- Institute of Pharmaceutical Research, GLA University
- Department of Pharmacy, Pranveer Singh Institute of Technology
- KIPS, Shri Shankaracharya Professional University
- Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy
- Department of Pharmacology, Saraswati College of Pharmacy
- University Centre for Research and Development, University of Biotechnology, Chandigarh University
- School of Pharmaceutical Sciences, Lovely Professional University
- Amity School of Pharmaceutical Sciences, Amity University
- Edição: Volume 30, Nº 24 (2024)
- Páginas: 1880-1893
- Seção: Immunology, Inflammation & Allergy
- URL: https://snv63.ru/1381-6128/article/view/645827
- DOI: https://doi.org/10.2174/0113816128299615240513174041
- ID: 645827
Citar
Texto integral
Resumo
:Inflammation is an individuals physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.
Sobre autores
Ritchu Babbar
Chitkara College of Pharmacy, Chitkara University
Autor responsável pela correspondência
Email: info@benthamscience.net
Arpanpreet Kaur
Chitkara College of Pharmacy, Chitkara University
Email: info@benthamscience.net
Vanya
Chitkara College of Pharmacy, Chitkara University
Email: info@benthamscience.net
Rashmi Arora
Chitkara College of Pharmacy, Chitkara University
Email: info@benthamscience.net
Jeetendra Gupta
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Pranay Wal
Department of Pharmacy, Pranveer Singh Institute of Technology
Email: info@benthamscience.net
Arpan Tripathi
KIPS, Shri Shankaracharya Professional University
Email: info@benthamscience.net
Akshada Koparde
Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy
Email: info@benthamscience.net
Pradeep Goyal
Department of Pharmacology, Saraswati College of Pharmacy
Email: info@benthamscience.net
Seema Ramniwas
University Centre for Research and Development, University of Biotechnology, Chandigarh University
Email: info@benthamscience.net
Monica Gulati
School of Pharmaceutical Sciences, Lovely Professional University
Email: info@benthamscience.net
Tapan Behl
Amity School of Pharmaceutical Sciences, Amity University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428-35. doi: 10.1038/nature07201 PMID: 18650913
- Rehni AK, Singh TG, Singh N, Arora S. Tramadol-induced seizurogenic effect: A possible role of opioid-dependent histamine (H1) receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 2010; 381(1): 11-9. doi: 10.1007/s00210-009-0476-y PMID: 20012267
- Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 2007; 171(3): 715-27. doi: 10.2353/ajpath.2007.070166 PMID: 17640961
- Bhattacharya T, Soares GAB, Chopra H, et al. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials 2022; 15(3): 804. doi: 10.3390/ma15030804 PMID: 35160749
- Tracy RP. The five cardinal signs of inflammation: Calor, dolor, rubor, tumor... and penuria (Apologies to Aulus Cornelius Celsus, De medicina, c. A.D. 25). J Gerontol A Biol Sci Med Sci 2006; 61(10): 1051-2. doi: 10.1093/gerona/61.10.1051 PMID: 17077197
- Punchard NA, Whelan CJ, Adcock I. The journal of inflammation. J Inflamm 2004; 1(1): 1. doi: 10.1186/1476-9255-1-1 PMID: 15813979
- Sanches PHG, Silva AAR, Porcari AM. Plasma lipid profiles differ among chronic inflammatory diseases. EBioMedicine 2021; 70: 103526. doi: 10.1016/j.ebiom.2021.103526 PMID: 34391095
- Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25(12): 1822-32. doi: 10.1038/s41591-019-0675-0 PMID: 31806905
- Frostegård J. Immune mechanisms in atherosclerosis, especially in diabetes type 2. Front Endocrinol 2013; 4: 162. doi: 10.3389/fendo.2013.00162 PMID: 24194733
- Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006; 47(8) (Suppl.): C7-C12. doi: 10.1016/j.jacc.2005.09.068 PMID: 16631513
- Teo KK, Rafiq T. Cardiovascular risk factors and prevention: A perspective from developing countries. Can J Cardiol 2021; 37(5): 733-43. doi: 10.1016/j.cjca.2021.02.009 PMID: 33610690
- Tarkin JM, Kaski JC. Pharmacological treatment of chronic stable angina pectoris. Clin Med 2013; 13(1): 63-70. doi: 10.7861/clinmedicine.13-1-63 PMID: 23472498
- Wenger NK. Angina in women. Curr Cardiol Rep 2010; 12(4): 307-14. doi: 10.1007/s11886-010-0111-z PMID: 20425162
- Medalie JH, Goldbourt U. Angina pectoris among 10,000 men. Am J Med 1976; 60(6): 910-21. doi: 10.1016/0002-9343(76)90921-9 PMID: 798490
- Lei L, Min L. Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 2015; 72: 865-7.
- Jacoby RM, Nesto RW. Acute myocardial infarction in the diabetic patient: Pathophysiology, clinical course and prognosis. J Am Coll Cardiol 1992; 20(3): 736-44. doi: 10.1016/0735-1097(92)90033-J PMID: 1512357
- Dąbek B, Dybiec J, Frąk W, et al. Novel therapeutic approaches in the management of chronic kidney disease. Biomedicines 2023; 11(10): 2746. doi: 10.3390/biomedicines11102746 PMID: 37893119
- Girndt M. Diagnosis and treatment of chronic kidney disease. Internist (Berl) 2017; 58(3): 243-56. doi: 10.1007/s00108-017-0195-2 PMID: 28194476
- Fardoun M, Al-Shehabi T, El-Yazbi A, et al. Ziziphus nummularia inhibits inflammation-induced atherogenic phenotype of human aortic smooth muscle cells. Oxid Med Cell Longev 2017; 2017: 1-10. doi: 10.1155/2017/4134093 PMID: 28593025
- Hosseini A, Ghorbani A, Alavi MS, et al. Cardioprotective effect of Sanguisorba minor against isoprenaline-induced myocardial infarction in rats. Front Pharmacol 2023; 14(14): 1305816. doi: 10.3389/fphar.2023.1305816 PMID: 38223198
- Badran A, Baydoun E, Samaha A, et al. Marjoram relaxes rat thoracic aorta via a PI3-K/eNOS/cGMP pathway. Biomolecules 2019; 9(6): 227. doi: 10.3390/biom9060227 PMID: 31212721
- Badri W, Miladi K, Nazari QA, Greige-Gerges H, Fessi H, Elaissari A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int J Pharm 2016; 515(1-2): 757-73. doi: 10.1016/j.ijpharm.2016.11.002 PMID: 27829170
- Haley Rebecca M. Localized and targeted delivery of NSAIDs for treatment of inflammation: A review. Exp Biol Med 2019; 244(6): 433-44.
- Litalien C, Jacqz-Aigrain E. Risks and benefits of nonsteroidal anti-inflammatory drugs in children: A comparison with paracetamol. Paediatr Drugs 2001; 3(11): 817-58. doi: 10.2165/00128072-200103110-00004 PMID: 11735667
- Kokki H. Nonsteroidal anti-inflammatory drugs for postoperative pain: a focus on children. Paediatr Drugs 2003; 5(2): 103-23. doi: 10.2165/00128072-200305020-00004 PMID: 12529163
- Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 1998; 94(6): 557-72. doi: 10.1042/cs0940557 PMID: 9854452
- Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf 2016; 15(4): 457-65. doi: 10.1517/14740338.2016.1140743 PMID: 26789102
- Zhang P, Zhang E, Xiao M, Chen C, Xu W. Study of anti-inflammatory activities of α-d-glucosylated eugenol. Arch Pharm Res 2013; 36(1): 109-15. doi: 10.1007/s12272-013-0003-z PMID: 23325490
- Yang R, Wang L, Yuan B, Liu Y. The pharmacological activities of licorice. Planta Med 2015; 81(18): 1654-69. doi: 10.1055/s-0035-1557893 PMID: 26366756
- Sahlmann CO, Ströbel P. Pathophysiologie der Entzündung. Nucl Med (Stuttg) 2016; 55(1): 1-6. doi: 10.1055/s-0037-1616468 PMID: 26875429
- Rees JC, Rossio JL, Wilson HE, Minton JP, Dodd MC. Cellular imunity in neoplasia: Antigen and mitogen responses in patients with bronchiogenic carcinoma. Cancer 1975; 36(6): 2010-5. doi: 10.1002/cncr.2820360613 PMID: 173458
- Lee J, Sim JH, Kim IJ. Peripheral immature B cells: Modulators of autoimmunity. Int J Rheum Dis 2015; 18(2): 200-7. doi: 10.1111/1756-185X.12432 PMID: 25292255
- Ahmed AU. An overview of inflammation: Mechanism and consequences. Front Biol (Beijing) 2011; 6(4): 274-8. doi: 10.1007/s11515-011-1123-9
- Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 2009; 15(2): 425-30. doi: 10.1158/1078-0432.CCR-08-0149 PMID: 19147746
- Guaadaoui A, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A. What is a bioactive compound? A combined definition for a preliminary consensus. Int J Nutr Food Sci 2014; 3(3): 174-9. doi: 10.11648/j.ijnfs.20140303.16
- Igwe EO, Charlton KE. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30(5): 701-31. doi: 10.1002/ptr.5581 PMID: 26992121
- Rosa FT, Zulet MÁ, Marchini JS, Martínez JA. Bioactive compounds with effects on inflammation markers in humans. Int J Food Sci Nutr 2012; 63(6): 749-65. doi: 10.3109/09637486.2011.649250 PMID: 22248031
- Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT. Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood) 2002; 227(10): 900-7. doi: 10.1177/153537020222701010 PMID: 12424332
- Amardeep K, Faizan A, Zaidi S. Importance of bioactive compounds present in plant products and their extraction: A review. Agricult Rev 2019; 40(4): 249-60.
- Cha JH, Kim WK, Ha AW, Kim MH, Chang MJ. Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutr Res Pract 2017; 11(2): 90-6. doi: 10.4162/nrp.2017.11.2.90 PMID: 28386381
- Ghavidel F, Amiri H, Tabrizi MH, Alidadi S, Hosseini H, Sahebkar A. The combinational effect of inulin and resveratrol on the oxidative stress and inflammation level in a rat model of diabetic nephropathy. Curr Dev Nutr 2023; 10(1): 102059..
- Posadino AM, Giordo R, Cossu A, et al. Flavin oxidase-induced ROS generation modulates PKC biphasic effect of resveratrol on endothelial cell survival. Biomolecules 2019; 9(6): 209. doi: 10.3390/biom9060209 PMID: 31151226
- Ramli I, Cheriet T, Posadino AM, et al. Potential therapeutic targets of resveratrol in the prevention and treatment of pulmonary fibrosis. Front Biosci-Landmark 2023; 28(9): 198. doi: 10.31083/j.fbl2809198 PMID: 37796708
- Tshivhase AM, Matsha T, Raghubeer S. Resveratrol attenuates high glucose-induced inflammation and improves glucose metabolism in HepG2 cells. Sci Rep 2024; 14(1): 1106. doi: 10.1038/s41598-023-50084-6 PMID: 38212345
- Gowd V, Kanika , Jori C, et al. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem 2022; 109: 109101. doi: 10.1016/j.jnutbio.2022.109101 PMID: 35777588
- Ye X, Li H, Anjum K, et al. Dual role of indoles derived from intestinal microbiota on human health. Front Immunol 2022; 13: 903526. doi: 10.3389/fimmu.2022.903526 PMID: 35784338
- Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 1991; 51(8): 2212-22. PMID: 2009540
- kubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in combination therapy of cancer: Emerging trends in clinics. Biology (Basel) 2021; 10(9): 849. doi: 10.3390/biology10090849 PMID: 34571726
- Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The mechanism underlying the influence of indole-3-propionic acid: a relevance to metabolic disorders. Front Endocrinol (Lausanne) 2022; 13: 841703. doi: 10.3389/fendo.2022.841703 PMID: 35370963
- Selvarajan K, Narasimhulu CA, Bapputty R, Parthasarathy S. Anti-inflammatory and antioxidant activities of the nonlipid (aqueous) components of sesame oil: Potential use in atherosclerosis. J Med Food 2015; 18(4): 393-402. doi: 10.1089/jmf.2014.0139 PMID: 25692333
- Hendrikx T, Schnabl B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J Intern Med 2019; 286(1): 32-40. doi: 10.1111/joim.12892 PMID: 30873652
- Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 2015; 23(11): 707-18. doi: 10.1016/j.tim.2015.08.001 PMID: 26439294
- Kim YG, Lee JH, Cho MH, Lee J. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei. BMC Microbiol 2011; 11(1): 119. doi: 10.1186/1471-2180-11-119 PMID: 21619597
- Ma Q, Zhang X, Qu Y. Biodegradation and biotransformation of indole: Advances and perspectives. Front Microbiol 2018; 9: 2625. doi: 10.3389/fmicb.2018.02625 PMID: 30443243
- Qu Y, Ma Q, Liu Z, et al. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain. Mol Microbiol 2017; 106(6): 905-18. doi: 10.1111/mmi.13852 PMID: 28963777
- Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int J Mol Sci 2018; 19(6): 1573. doi: 10.3390/ijms19061573 PMID: 29799460
- Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 2013; 72: 1-20. doi: 10.1016/j.plaphy.2013.05.009 PMID: 23774057
- Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47. doi: 10.1093/ajcn/79.5.727 PMID: 15113710
- Nardini M, Cirillo E, Natella F, Scaccini C. Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 2002; 50(20): 5735-41. doi: 10.1021/jf0257547 PMID: 12236707
- Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005; 45(4): 287-306. doi: 10.1080/1040869059096 PMID: 16047496
- Boudet AM. Evolution and current status of research in phenolic compounds. Phytochemistry 2007; 68(22-24): 2722-35. doi: 10.1016/j.phytochem.2007.06.012 PMID: 17643453
- Rahman MM, Rahaman MS, Islam MR, et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021; 27(1): 233. doi: 10.3390/molecules27010233 PMID: 35011465
- Korta A, Kula J, Gomułka K. The role of IL-23 in the pathogenesis and therapy of inflammatory bowel disease. Int J Mol Sci 2023; 24(12): 10172. doi: 10.3390/ijms241210172 PMID: 37373318
- Yi W, Fischer J, Krewer G, Akoh CC. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J Agric Food Chem 2005; 53(18): 7320-9. doi: 10.1021/jf051333o PMID: 16131149
- Kim S, Lee H, Moon H, et al. Epigallocatechin-3-gallate attenuates myocardial dysfunction via inhibition of endothelial-to-mesenchymal transition. Antioxidants 2023; 12(5): 1059. doi: 10.3390/antiox12051059 PMID: 37237925
- Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int J Mol Sci 2022; 24(1): 340. doi: 10.3390/ijms24010340 PMID: 36613784
- Surma S, Sahebkar A, Banach M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol Res 2023; 187: 106596. doi: 10.1016/j.phrs.2022.106596 PMID: 36473629
- Yang Y, Liu M, Zhao T, et al. Epigallocatechin-3-gallate Mo nanoparticles (EGM NPs) efficiently treat liver injury by strongly reducing oxidative stress, inflammation and endoplasmic reticulum stress. Front Pharmacol 2022; 13: 1039558. doi: 10.3389/fphar.2022.1039558 PMID: 36278211
- Cote B, Elbarbry F, Bui F, et al. Mechanistic basis for the role of phytochemicals in inflammation-associated chronic diseases. Molecules 2022; 27(3): 781. doi: 10.3390/molecules27030781 PMID: 35164043
- Chen J, Sun N, Li F, et al. Carnosol alleviates collagen-induced arthritis by inhibiting TH17-mediated immunity and favoring suppressive activity of regulatory T cells. BioMed Res Int 2023; 2023: 1-10. doi: 10.1155/2023/1179973 PMID: 37415927
- Yan Y, Liu Y, Yang Y, Ding Y, Sun X. Carnosol suppresses microglia cell inflammation and apoptosis through PI3K/AKT/mTOR signaling pathway. Immunopharmacol Immunotoxicol 2022; 44(5): 656-62. doi: 10.1080/08923973.2022.2074448 PMID: 35521965
- Alsamri H, El Hasasna H, Al Dhaheri Y, Eid AH, Attoub S, Iratni R. Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3. Front Oncol 2019; 9: 743. doi: 10.3389/fonc.2019.00743 PMID: 31456939
- Habtemariam S. Anti-inflammatory therapeutic mechanisms of natural products: Insight from rosemary diterpenes, carnosic acid and carnosol. Biomedicines 2023; 11(2): 545. doi: 10.3390/biomedicines11020545 PMID: 36831081
- Guo Y, Guan T, Jiao X, et al. Carbon monoxide preconditioning is mediated via activation of mitochondrial-derived vesicles. Brain Res Bull 2023; 195: 99-108. doi: 10.1016/j.brainresbull.2023.02.011 PMID: 36805464
- Fernando IPS, Nah JW, Jeon YJ. Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 2016; 48: 22-30. doi: 10.1016/j.etap.2016.09.023 PMID: 27716532
- Keyzers RA, Davies-Coleman MT. Anti-inflammatory metabolites from marine sponges. Chem Soc Rev 2005; 34(4): 355-65. doi: 10.1039/b408600g PMID: 15778769
- Tsubosaka Y, Murata T, Yamada K, Uemura D, Hori M, Ozaki H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J Pharmacol Sci 2010; 113(3): 208-13. doi: 10.1254/jphs.10065FP PMID: 20562517
- Gomes N, Fernandes F, Madureira-Carvalho Á, et al. Profiling of heterobranchia sea slugs from portuguese coastal waters as producers of anti-cancer and anti-inflammatory agents. Molecules 2018; 23(5): 1027. doi: 10.3390/molecules23051027 PMID: 29702573
- Sladić D, Gasić M. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida. Molecules 2006; 11(1): 1-33. doi: 10.3390/11010001 PMID: 17962742
- Cheung RCF, Ng TB, Wong JH, Chen Y, Chan WY. Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol 2016; 100(4): 1645-66. doi: 10.1007/s00253-015-7244-3 PMID: 26711278
- Joseph S, Sabulal B, George V, Antony K, Janardhanan K. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm 2011; 61(3): 335-42. doi: 10.2478/v10007-011-0030-6 PMID: 21945912
- Lai KH, You WJ, Lin CC, El-Shazly M, Liao ZJ, Su JH. Anti-inflammatory cembranoids from the soft coral Lobophytum crassum. Mar Drugs 2017; 15(10): 327. doi: 10.3390/md15100327 PMID: 29065512
- Naghshbandi MP, Tabatabaei M, Aghbashlo M, Aftab MN, Iqbal I. Metabolic engineering of microalgae for biofuel production. Methods Mol Biol 2019; 1980: 153-72. doi: 10.1007/7651_2018_205 PMID: 30666564
- de Jesus Raposo MF, de Morais RMSC, de Morais AMMB. Health applications of bioactive compounds from marine microalgae. Life Sci 2013; 93(15): 479-86. doi: 10.1016/j.lfs.2013.08.002 PMID: 23994664
- Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006; 101(2): 87-96. doi: 10.1263/jbb.101.87 PMID: 16569602
- Sibi G, Rabina S. Inhibition of Pro-inflammatory mediators and cytokines by Chlorella vulgaris extracts. Pharmacognosy Res 2016; 8(2): 118-22. doi: 10.4103/0974-8490.172660 PMID: 27034602
- Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016; 90(8): 1817-40. doi: 10.1007/s00204-016-1744-5 PMID: 27259333
- Kapuścik A, Hrouzek P, Kuzma M, et al. Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. ChemBioChem 2013; 14(17): 2329-37. doi: 10.1002/cbic.201300246 PMID: 24123716
- Wollina U, Voicu C, Gianfaldoni S, Lotti T, França K, Tchernev G. Arthrospira platensis potential in dermatology and beyond. Open Access Maced J Med Sci 2018; 6(1): 176-80. doi: 10.3889/oamjms.2018.033 PMID: 29484021
- Méresse S, Fodil M, Fleury F, Chénais B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: A promising bioactive compound for cancer therapy. Int J Mol Sci 2020; 21(23): 9273. doi: 10.3390/ijms21239273 PMID: 33291743
- Ruocco N, Annunziata C, Ianora A, et al. Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development. Sci Rep 2019; 9(1): 517. doi: 10.1038/s41598-018-37546-y PMID: 30679744
- Martínez Andrade K, Lauritano C, Romano G, Ianora A. Marine microalgae with anti-cancer properties. Mar Drugs 2018; 16(5): 165. doi: 10.3390/md16050165 PMID: 29762545
- MubarakAli D, Gopinath V, Rameshbabu N, Thajuddin N. Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 2012; 74: 8-11. doi: 10.1016/j.matlet.2012.01.026
- Choo WT, Teoh ML, Phang SM, et al. Microalgae as potential anti-inflammatory natural product against human inflammatory skin diseases. Front Pharmacol 2020; 11: 1086. doi: 10.3389/fphar.2020.01086 PMID: 32848730
- Dyshlovoy S, Honecker F. Marine compounds and cancer: where do we stand? Mar Drugs 2015; 13(9): 5657-65. doi: 10.3390/md13095657 PMID: 26540740
- Petit K, Biard JF. Marine natural products and related compounds as anticancer agents: An overview of their clinical status. Anti-Cancer Agents Med Chem 2013; 13: 603-31. doi: 10.2174/1871520611313040010
- Simmons TL, Gerwick WH. Anticancer drugs of marine origin.Oceans and human health: risks and remedies from the seas. USA,: Academic Press. 2008.
Arquivos suplementares
