Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases


Citar

Texto integral

Resumo

:Inflammation is an individual’s physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.

Sobre autores

Ritchu Babbar

Chitkara College of Pharmacy, Chitkara University

Autor responsável pela correspondência
Email: info@benthamscience.net

Arpanpreet Kaur

Chitkara College of Pharmacy, Chitkara University

Email: info@benthamscience.net

Vanya

Chitkara College of Pharmacy, Chitkara University

Email: info@benthamscience.net

Rashmi Arora

Chitkara College of Pharmacy, Chitkara University

Email: info@benthamscience.net

Jeetendra Gupta

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Pranay Wal

Department of Pharmacy, Pranveer Singh Institute of Technology

Email: info@benthamscience.net

Arpan Tripathi

KIPS, Shri Shankaracharya Professional University

Email: info@benthamscience.net

Akshada Koparde

Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy

Email: info@benthamscience.net

Pradeep Goyal

Department of Pharmacology, Saraswati College of Pharmacy

Email: info@benthamscience.net

Seema Ramniwas

University Centre for Research and Development, University of Biotechnology, Chandigarh University

Email: info@benthamscience.net

Monica Gulati

School of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Tapan Behl

Amity School of Pharmaceutical Sciences, Amity University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428-35. doi: 10.1038/nature07201 PMID: 18650913
  2. Rehni AK, Singh TG, Singh N, Arora S. Tramadol-induced seizurogenic effect: A possible role of opioid-dependent histamine (H1) receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 2010; 381(1): 11-9. doi: 10.1007/s00210-009-0476-y PMID: 20012267
  3. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 2007; 171(3): 715-27. doi: 10.2353/ajpath.2007.070166 PMID: 17640961
  4. Bhattacharya T, Soares GAB, Chopra H, et al. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials 2022; 15(3): 804. doi: 10.3390/ma15030804 PMID: 35160749
  5. Tracy RP. The five cardinal signs of inflammation: Calor, dolor, rubor, tumor... and penuria (Apologies to Aulus Cornelius Celsus, De medicina, c. A.D. 25). J Gerontol A Biol Sci Med Sci 2006; 61(10): 1051-2. doi: 10.1093/gerona/61.10.1051 PMID: 17077197
  6. Punchard NA, Whelan CJ, Adcock I. The journal of inflammation. J Inflamm 2004; 1(1): 1. doi: 10.1186/1476-9255-1-1 PMID: 15813979
  7. Sanches PHG, Silva AAR, Porcari AM. Plasma lipid profiles differ among chronic inflammatory diseases. EBioMedicine 2021; 70: 103526. doi: 10.1016/j.ebiom.2021.103526 PMID: 34391095
  8. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25(12): 1822-32. doi: 10.1038/s41591-019-0675-0 PMID: 31806905
  9. Frostegård J. Immune mechanisms in atherosclerosis, especially in diabetes type 2. Front Endocrinol 2013; 4: 162. doi: 10.3389/fendo.2013.00162 PMID: 24194733
  10. Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006; 47(8) (Suppl.): C7-C12. doi: 10.1016/j.jacc.2005.09.068 PMID: 16631513
  11. Teo KK, Rafiq T. Cardiovascular risk factors and prevention: A perspective from developing countries. Can J Cardiol 2021; 37(5): 733-43. doi: 10.1016/j.cjca.2021.02.009 PMID: 33610690
  12. Tarkin JM, Kaski JC. Pharmacological treatment of chronic stable angina pectoris. Clin Med 2013; 13(1): 63-70. doi: 10.7861/clinmedicine.13-1-63 PMID: 23472498
  13. Wenger NK. Angina in women. Curr Cardiol Rep 2010; 12(4): 307-14. doi: 10.1007/s11886-010-0111-z PMID: 20425162
  14. Medalie JH, Goldbourt U. Angina pectoris among 10,000 men. Am J Med 1976; 60(6): 910-21. doi: 10.1016/0002-9343(76)90921-9 PMID: 798490
  15. Lei L, Min L. Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 2015; 72: 865-7.
  16. Jacoby RM, Nesto RW. Acute myocardial infarction in the diabetic patient: Pathophysiology, clinical course and prognosis. J Am Coll Cardiol 1992; 20(3): 736-44. doi: 10.1016/0735-1097(92)90033-J PMID: 1512357
  17. Dąbek B, Dybiec J, Frąk W, et al. Novel therapeutic approaches in the management of chronic kidney disease. Biomedicines 2023; 11(10): 2746. doi: 10.3390/biomedicines11102746 PMID: 37893119
  18. Girndt M. Diagnosis and treatment of chronic kidney disease. Internist (Berl) 2017; 58(3): 243-56. doi: 10.1007/s00108-017-0195-2 PMID: 28194476
  19. Fardoun M, Al-Shehabi T, El-Yazbi A, et al. Ziziphus nummularia inhibits inflammation-induced atherogenic phenotype of human aortic smooth muscle cells. Oxid Med Cell Longev 2017; 2017: 1-10. doi: 10.1155/2017/4134093 PMID: 28593025
  20. Hosseini A, Ghorbani A, Alavi MS, et al. Cardioprotective effect of Sanguisorba minor against isoprenaline-induced myocardial infarction in rats. Front Pharmacol 2023; 14(14): 1305816. doi: 10.3389/fphar.2023.1305816 PMID: 38223198
  21. Badran A, Baydoun E, Samaha A, et al. Marjoram relaxes rat thoracic aorta via a PI3-K/eNOS/cGMP pathway. Biomolecules 2019; 9(6): 227. doi: 10.3390/biom9060227 PMID: 31212721
  22. Badri W, Miladi K, Nazari QA, Greige-Gerges H, Fessi H, Elaissari A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int J Pharm 2016; 515(1-2): 757-73. doi: 10.1016/j.ijpharm.2016.11.002 PMID: 27829170
  23. Haley Rebecca M. Localized and targeted delivery of NSAIDs for treatment of inflammation: A review. Exp Biol Med 2019; 244(6): 433-44.
  24. Litalien C, Jacqz-Aigrain E. Risks and benefits of nonsteroidal anti-inflammatory drugs in children: A comparison with paracetamol. Paediatr Drugs 2001; 3(11): 817-58. doi: 10.2165/00128072-200103110-00004 PMID: 11735667
  25. Kokki H. Nonsteroidal anti-inflammatory drugs for postoperative pain: a focus on children. Paediatr Drugs 2003; 5(2): 103-23. doi: 10.2165/00128072-200305020-00004 PMID: 12529163
  26. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 1998; 94(6): 557-72. doi: 10.1042/cs0940557 PMID: 9854452
  27. Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf 2016; 15(4): 457-65. doi: 10.1517/14740338.2016.1140743 PMID: 26789102
  28. Zhang P, Zhang E, Xiao M, Chen C, Xu W. Study of anti-inflammatory activities of α-d-glucosylated eugenol. Arch Pharm Res 2013; 36(1): 109-15. doi: 10.1007/s12272-013-0003-z PMID: 23325490
  29. Yang R, Wang L, Yuan B, Liu Y. The pharmacological activities of licorice. Planta Med 2015; 81(18): 1654-69. doi: 10.1055/s-0035-1557893 PMID: 26366756
  30. Sahlmann CO, Ströbel P. Pathophysiologie der Entzündung. Nucl Med (Stuttg) 2016; 55(1): 1-6. doi: 10.1055/s-0037-1616468 PMID: 26875429
  31. Rees JC, Rossio JL, Wilson HE, Minton JP, Dodd MC. Cellular imunity in neoplasia: Antigen and mitogen responses in patients with bronchiogenic carcinoma. Cancer 1975; 36(6): 2010-5. doi: 10.1002/cncr.2820360613 PMID: 173458
  32. Lee J, Sim JH, Kim IJ. Peripheral immature B cells: Modulators of autoimmunity. Int J Rheum Dis 2015; 18(2): 200-7. doi: 10.1111/1756-185X.12432 PMID: 25292255
  33. Ahmed AU. An overview of inflammation: Mechanism and consequences. Front Biol (Beijing) 2011; 6(4): 274-8. doi: 10.1007/s11515-011-1123-9
  34. Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 2009; 15(2): 425-30. doi: 10.1158/1078-0432.CCR-08-0149 PMID: 19147746
  35. Guaadaoui A, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A. What is a bioactive compound? A combined definition for a preliminary consensus. Int J Nutr Food Sci 2014; 3(3): 174-9. doi: 10.11648/j.ijnfs.20140303.16
  36. Igwe EO, Charlton KE. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30(5): 701-31. doi: 10.1002/ptr.5581 PMID: 26992121
  37. Rosa FT, Zulet MÁ, Marchini JS, Martínez JA. Bioactive compounds with effects on inflammation markers in humans. Int J Food Sci Nutr 2012; 63(6): 749-65. doi: 10.3109/09637486.2011.649250 PMID: 22248031
  38. Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT. Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood) 2002; 227(10): 900-7. doi: 10.1177/153537020222701010 PMID: 12424332
  39. Amardeep K, Faizan A, Zaidi S. Importance of bioactive compounds present in plant products and their extraction: A review. Agricult Rev 2019; 40(4): 249-60.
  40. Cha JH, Kim WK, Ha AW, Kim MH, Chang MJ. Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutr Res Pract 2017; 11(2): 90-6. doi: 10.4162/nrp.2017.11.2.90 PMID: 28386381
  41. Ghavidel F, Amiri H, Tabrizi MH, Alidadi S, Hosseini H, Sahebkar A. The combinational effect of inulin and resveratrol on the oxidative stress and inflammation level in a rat model of diabetic nephropathy. Curr Dev Nutr 2023; 10(1): 102059..
  42. Posadino AM, Giordo R, Cossu A, et al. Flavin oxidase-induced ROS generation modulates PKC biphasic effect of resveratrol on endothelial cell survival. Biomolecules 2019; 9(6): 209. doi: 10.3390/biom9060209 PMID: 31151226
  43. Ramli I, Cheriet T, Posadino AM, et al. Potential therapeutic targets of resveratrol in the prevention and treatment of pulmonary fibrosis. Front Biosci-Landmark 2023; 28(9): 198. doi: 10.31083/j.fbl2809198 PMID: 37796708
  44. Tshivhase AM, Matsha T, Raghubeer S. Resveratrol attenuates high glucose-induced inflammation and improves glucose metabolism in HepG2 cells. Sci Rep 2024; 14(1): 1106. doi: 10.1038/s41598-023-50084-6 PMID: 38212345
  45. Gowd V, Kanika , Jori C, et al. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem 2022; 109: 109101. doi: 10.1016/j.jnutbio.2022.109101 PMID: 35777588
  46. Ye X, Li H, Anjum K, et al. Dual role of indoles derived from intestinal microbiota on human health. Front Immunol 2022; 13: 903526. doi: 10.3389/fimmu.2022.903526 PMID: 35784338
  47. Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 1991; 51(8): 2212-22. PMID: 2009540
  48. Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in combination therapy of cancer: Emerging trends in clinics. Biology (Basel) 2021; 10(9): 849. doi: 10.3390/biology10090849 PMID: 34571726
  49. Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The mechanism underlying the influence of indole-3-propionic acid: a relevance to metabolic disorders. Front Endocrinol (Lausanne) 2022; 13: 841703. doi: 10.3389/fendo.2022.841703 PMID: 35370963
  50. Selvarajan K, Narasimhulu CA, Bapputty R, Parthasarathy S. Anti-inflammatory and antioxidant activities of the nonlipid (aqueous) components of sesame oil: Potential use in atherosclerosis. J Med Food 2015; 18(4): 393-402. doi: 10.1089/jmf.2014.0139 PMID: 25692333
  51. Hendrikx T, Schnabl B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J Intern Med 2019; 286(1): 32-40. doi: 10.1111/joim.12892 PMID: 30873652
  52. Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 2015; 23(11): 707-18. doi: 10.1016/j.tim.2015.08.001 PMID: 26439294
  53. Kim YG, Lee JH, Cho MH, Lee J. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei. BMC Microbiol 2011; 11(1): 119. doi: 10.1186/1471-2180-11-119 PMID: 21619597
  54. Ma Q, Zhang X, Qu Y. Biodegradation and biotransformation of indole: Advances and perspectives. Front Microbiol 2018; 9: 2625. doi: 10.3389/fmicb.2018.02625 PMID: 30443243
  55. Qu Y, Ma Q, Liu Z, et al. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain. Mol Microbiol 2017; 106(6): 905-18. doi: 10.1111/mmi.13852 PMID: 28963777
  56. Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int J Mol Sci 2018; 19(6): 1573. doi: 10.3390/ijms19061573 PMID: 29799460
  57. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 2013; 72: 1-20. doi: 10.1016/j.plaphy.2013.05.009 PMID: 23774057
  58. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47. doi: 10.1093/ajcn/79.5.727 PMID: 15113710
  59. Nardini M, Cirillo E, Natella F, Scaccini C. Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 2002; 50(20): 5735-41. doi: 10.1021/jf0257547 PMID: 12236707
  60. Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005; 45(4): 287-306. doi: 10.1080/1040869059096 PMID: 16047496
  61. Boudet AM. Evolution and current status of research in phenolic compounds. Phytochemistry 2007; 68(22-24): 2722-35. doi: 10.1016/j.phytochem.2007.06.012 PMID: 17643453
  62. Rahman MM, Rahaman MS, Islam MR, et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021; 27(1): 233. doi: 10.3390/molecules27010233 PMID: 35011465
  63. Korta A, Kula J, Gomułka K. The role of IL-23 in the pathogenesis and therapy of inflammatory bowel disease. Int J Mol Sci 2023; 24(12): 10172. doi: 10.3390/ijms241210172 PMID: 37373318
  64. Yi W, Fischer J, Krewer G, Akoh CC. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J Agric Food Chem 2005; 53(18): 7320-9. doi: 10.1021/jf051333o PMID: 16131149
  65. Kim S, Lee H, Moon H, et al. Epigallocatechin-3-gallate attenuates myocardial dysfunction via inhibition of endothelial-to-mesenchymal transition. Antioxidants 2023; 12(5): 1059. doi: 10.3390/antiox12051059 PMID: 37237925
  66. Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int J Mol Sci 2022; 24(1): 340. doi: 10.3390/ijms24010340 PMID: 36613784
  67. Surma S, Sahebkar A, Banach M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol Res 2023; 187: 106596. doi: 10.1016/j.phrs.2022.106596 PMID: 36473629
  68. Yang Y, Liu M, Zhao T, et al. Epigallocatechin-3-gallate Mo nanoparticles (EGM NPs) efficiently treat liver injury by strongly reducing oxidative stress, inflammation and endoplasmic reticulum stress. Front Pharmacol 2022; 13: 1039558. doi: 10.3389/fphar.2022.1039558 PMID: 36278211
  69. Cote B, Elbarbry F, Bui F, et al. Mechanistic basis for the role of phytochemicals in inflammation-associated chronic diseases. Molecules 2022; 27(3): 781. doi: 10.3390/molecules27030781 PMID: 35164043
  70. Chen J, Sun N, Li F, et al. Carnosol alleviates collagen-induced arthritis by inhibiting TH17-mediated immunity and favoring suppressive activity of regulatory T cells. BioMed Res Int 2023; 2023: 1-10. doi: 10.1155/2023/1179973 PMID: 37415927
  71. Yan Y, Liu Y, Yang Y, Ding Y, Sun X. Carnosol suppresses microglia cell inflammation and apoptosis through PI3K/AKT/mTOR signaling pathway. Immunopharmacol Immunotoxicol 2022; 44(5): 656-62. doi: 10.1080/08923973.2022.2074448 PMID: 35521965
  72. Alsamri H, El Hasasna H, Al Dhaheri Y, Eid AH, Attoub S, Iratni R. Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3. Front Oncol 2019; 9: 743. doi: 10.3389/fonc.2019.00743 PMID: 31456939
  73. Habtemariam S. Anti-inflammatory therapeutic mechanisms of natural products: Insight from rosemary diterpenes, carnosic acid and carnosol. Biomedicines 2023; 11(2): 545. doi: 10.3390/biomedicines11020545 PMID: 36831081
  74. Guo Y, Guan T, Jiao X, et al. Carbon monoxide preconditioning is mediated via activation of mitochondrial-derived vesicles. Brain Res Bull 2023; 195: 99-108. doi: 10.1016/j.brainresbull.2023.02.011 PMID: 36805464
  75. Fernando IPS, Nah JW, Jeon YJ. Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 2016; 48: 22-30. doi: 10.1016/j.etap.2016.09.023 PMID: 27716532
  76. Keyzers RA, Davies-Coleman MT. Anti-inflammatory metabolites from marine sponges. Chem Soc Rev 2005; 34(4): 355-65. doi: 10.1039/b408600g PMID: 15778769
  77. Tsubosaka Y, Murata T, Yamada K, Uemura D, Hori M, Ozaki H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J Pharmacol Sci 2010; 113(3): 208-13. doi: 10.1254/jphs.10065FP PMID: 20562517
  78. Gomes N, Fernandes F, Madureira-Carvalho Á, et al. Profiling of heterobranchia sea slugs from portuguese coastal waters as producers of anti-cancer and anti-inflammatory agents. Molecules 2018; 23(5): 1027. doi: 10.3390/molecules23051027 PMID: 29702573
  79. Sladić D, Gasić M. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida. Molecules 2006; 11(1): 1-33. doi: 10.3390/11010001 PMID: 17962742
  80. Cheung RCF, Ng TB, Wong JH, Chen Y, Chan WY. Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol 2016; 100(4): 1645-66. doi: 10.1007/s00253-015-7244-3 PMID: 26711278
  81. Joseph S, Sabulal B, George V, Antony K, Janardhanan K. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm 2011; 61(3): 335-42. doi: 10.2478/v10007-011-0030-6 PMID: 21945912
  82. Lai KH, You WJ, Lin CC, El-Shazly M, Liao ZJ, Su JH. Anti-inflammatory cembranoids from the soft coral Lobophytum crassum. Mar Drugs 2017; 15(10): 327. doi: 10.3390/md15100327 PMID: 29065512
  83. Naghshbandi MP, Tabatabaei M, Aghbashlo M, Aftab MN, Iqbal I. Metabolic engineering of microalgae for biofuel production. Methods Mol Biol 2019; 1980: 153-72. doi: 10.1007/7651_2018_205 PMID: 30666564
  84. de Jesus Raposo MF, de Morais RMSC, de Morais AMMB. Health applications of bioactive compounds from marine microalgae. Life Sci 2013; 93(15): 479-86. doi: 10.1016/j.lfs.2013.08.002 PMID: 23994664
  85. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006; 101(2): 87-96. doi: 10.1263/jbb.101.87 PMID: 16569602
  86. Sibi G, Rabina S. Inhibition of Pro-inflammatory mediators and cytokines by Chlorella vulgaris extracts. Pharmacognosy Res 2016; 8(2): 118-22. doi: 10.4103/0974-8490.172660 PMID: 27034602
  87. Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016; 90(8): 1817-40. doi: 10.1007/s00204-016-1744-5 PMID: 27259333
  88. Kapuścik A, Hrouzek P, Kuzma M, et al. Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. ChemBioChem 2013; 14(17): 2329-37. doi: 10.1002/cbic.201300246 PMID: 24123716
  89. Wollina U, Voicu C, Gianfaldoni S, Lotti T, França K, Tchernev G. Arthrospira platensis – potential in dermatology and beyond. Open Access Maced J Med Sci 2018; 6(1): 176-80. doi: 10.3889/oamjms.2018.033 PMID: 29484021
  90. Méresse S, Fodil M, Fleury F, Chénais B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: A promising bioactive compound for cancer therapy. Int J Mol Sci 2020; 21(23): 9273. doi: 10.3390/ijms21239273 PMID: 33291743
  91. Ruocco N, Annunziata C, Ianora A, et al. Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development. Sci Rep 2019; 9(1): 517. doi: 10.1038/s41598-018-37546-y PMID: 30679744
  92. Martínez Andrade K, Lauritano C, Romano G, Ianora A. Marine microalgae with anti-cancer properties. Mar Drugs 2018; 16(5): 165. doi: 10.3390/md16050165 PMID: 29762545
  93. MubarakAli D, Gopinath V, Rameshbabu N, Thajuddin N. Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 2012; 74: 8-11. doi: 10.1016/j.matlet.2012.01.026
  94. Choo WT, Teoh ML, Phang SM, et al. Microalgae as potential anti-inflammatory natural product against human inflammatory skin diseases. Front Pharmacol 2020; 11: 1086. doi: 10.3389/fphar.2020.01086 PMID: 32848730
  95. Dyshlovoy S, Honecker F. Marine compounds and cancer: where do we stand? Mar Drugs 2015; 13(9): 5657-65. doi: 10.3390/md13095657 PMID: 26540740
  96. Petit K, Biard JF. Marine natural products and related compounds as anticancer agents: An overview of their clinical status. Anti-Cancer Agents Med Chem 2013; 13: 603-31. doi: 10.2174/1871520611313040010
  97. Simmons TL, Gerwick WH. Anticancer drugs of marine origin.Oceans and human health: risks and remedies from the seas. USA,: Academic Press. 2008.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024