Diagnosis of the Initial Stage of Hepatocellular Carcinoma: A Review


Cite item

Full Text

Abstract

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. There may be more than a million instances of hepatocellular carcinoma by 2025, making it a persistent concern for global health. The most common form of hepatocellular carcinoma accounts for more than 90% of cases. There is no known cure for hepatocellular carcinoma, which is usually detected late in life. Unlike most other common malignancies, such as lung, prostate, and breast cancers, where mortality rates are declining, rates of death are rising by around 2-3% every year. It is extremely difficult to diagnose hepatocellular carcinoma in its early stages. Alpha-fetoprotein serology studies and ultrasonography (US) monitoring were historically the primary methods for early detection of hepatocellular cancer. However, the sensitivity or specificity of ultrasonography/alpha-fetoprotein (US/AFP) is not high enough to detect hepatocellular carcinoma in its early stages. Alpha-fetoprotein, or AFP, is an amino acid that is normally produced by the liver or yolk sac of an embryonic baby. In adults, AFP levels are typically modest. Adults with high levels of AFP have been associated with several illnesses, the most well-known of which are certain types of cancer. It is still possible to diagnose hepatocellular carcinoma early because of current technological advancements. We address the advancements in the diagnosis of hepatocellular carcinoma in this article, with a focus on new imaging techniques and diagnostic markers for early-stage tumor identification.

About the authors

Krishana Sharma

Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy,, Teerthanker Mahaveer University

Email: info@benthamscience.net

Mohd. Mohsin

Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University

Email: info@benthamscience.net

Piyush Mittal

Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University

Email: info@benthamscience.net

Zeeshan Ali

Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University

Email: info@benthamscience.net

Nishat Fatma

Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University,

Email: info@benthamscience.net

Prashant Upadhyay

Faculty of Pharmacy, IFTM University

Email: info@benthamscience.net

Ritu Gupta

Department of Pharmacy, Lala Lajpat Rai Memorial Medical College (Government -Run -Medical College)

Email: info@benthamscience.net

Anurag Verma

Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University

Email: info@benthamscience.net

Gajendra Kumar

Department of Chemistry,, Constituent Government College (M.J.P.R.U. Bareilly)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Moldogazieva N, Mokhosoev I, Zavadskiy S, Terentiev A. Proteomic profiling and artificial intelligence for Hepatocellular carcinoma translational medicine. Biomedicines 2021; 9(2): 159. doi: 10.3390/biomedicines9020159 PMID: 33562077
  2. Villanueva A. Hepatocellular carcinoma. N Engl J Med 2019; 380(15): 1450-62. doi: 10.1056/NEJMra1713263
  3. Akinyemiju T, Abera S, Ahmed M, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level. JAMA Oncol 2017; 3(12): 1683-91. doi: 10.1001/jamaoncol.2017.3055 PMID: 28983565
  4. Kanwal F, Kramer J, Asch SM, Chayanupatkul M, Cao Y, El-Serag HB. Risk of Hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology 2017; 153(4): 996-1005.e1. doi: 10.1053/j.gastro.2017.06.012 PMID: 28642197
  5. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018; 67(1): 123-33. doi: 10.1002/hep.29466 PMID: 28802062
  6. Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of Hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015; 47(5): 505-11. doi: 10.1038/ng.3252 PMID: 25822088
  7. Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of Hepatocellular carcinoma. World J Gastroenterol 2015; 21(37): 10573-83. doi: 10.3748/wjg.v21.i37.10573 PMID: 26457017
  8. Masuzaki R, Karp SJ, Omata M. New serum markers of Hepatocellular carcinoma. Semin Oncol 2012; 39(4): 434-9. doi: 10.1053/j.seminoncol.2012.05.009 PMID: 22846860
  9. Maxim LD, Niebo R, Utell MJ. Screening tests: A review with examples. Inhal Toxicol 2014; 26(13): 811-28. doi: 10.3109/08958378.2014.955932 PMID: 25264934
  10. IJzerman MJ, de Boer J, Azad A, et al. Towards routine implementation of liquid biopsies in cancer management: It is always too early, until suddenly it is too late. Diagnostics 2021; 11(1): 103. doi: 10.3390/diagnostics11010103 PMID: 33440749
  11. Kumar S, Mohan A, Guleria R. Biomarkers in cancer screening, research and detection: Present and future: A review. Biomarkers 2006; 11(5): 385-405. doi: 10.1080/13547500600775011 PMID: 16966157
  12. Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 2004; 159(9): 882-90. doi: 10.1093/aje/kwh101 PMID: 15105181
  13. Wu L, Qu X. Cancer biomarker detection: Recent achievements and challenges. Chem Soc Rev 2015; 44(10): 2963-97. doi: 10.1039/C4CS00370E PMID: 25739971
  14. De Guire V, Robitaille R, Tétreault N, et al. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clin Biochem 2013; 46(10-11): 846-60. doi: 10.1016/j.clinbiochem.2013.03.015 PMID: 23562576
  15. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15(4): 827-32. doi: 10.1016/0735-1097(90)90282-T PMID: 2407762
  16. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of Hepatocellular carcinoma: A 2017 update. Hepatol Int 2017; 11(4): 317-70. doi: 10.1007/s12072-017-9799-9 PMID: 28620797
  17. Kudo M, Matsui O, Izumi N, et al. JSH consensus-based clinical practice guidelines for the management of Hepatocellular carcinoma: 2014 update by the liver cancer study group of Japan. Liver Cancer 2014; 3(3-4): 458-68. doi: 10.1159/000343875 PMID: 26280007
  18. Bruix J, Sherman M. Management of Hepatocellular carcinoma: An update. Hepatology 2011; 53(3): 1020-2. doi: 10.1002/hep.24199 PMID: 21374666
  19. Galle PR, Forner A, Llovet JM, et al. EASL clinical practice guidelines: Management of Hepatocellular carcinoma. J Hepatol 2018; 69(1): 182-236. doi: 10.1016/j.jhep.2018.03.019 PMID: 29628281
  20. Wald C, Russo MW, Heimbach JK, Hussain HK, Pomfret EA, Bruix J. New OPTN/UNOS policy for liver transplant allocation: Standardization of liver imaging, diagnosis, classification, and reporting of Hepatocellular carcinoma. Radiology 2013; 266(2): 376-82. doi: 10.1148/radiol.12121698 PMID: 23362092
  21. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of Hepatocellular carcinoma. Hepatology 2018; 67(1): 358-80. doi: 10.1002/hep.29086 PMID: 28130846
  22. Benson AB III, D’Angelica MI, Abbott DE, et al. NCCN guidelines insights: Hepatobiliary cancers, version 1.2017. J Natl Compr Canc Netw 2017; 15(5): 563-73. doi: 10.6004/jnccn.2017.0059 PMID: 28476736
  23. Xie DY, Ren ZG, Zhou J, Fan J, Gao Q. Critical appraisal of Chinese 2017 guideline on the management of Hepatocellular carcinoma. Hepatobiliary Surg Nutr 2017; 6(6): 387-96. doi: 10.21037/hbsn.2017.11.01 PMID: 29312973
  24. Kudo M, Izumi N, Kokudo N, et al. Management of Hepatocellular carcinoma in Japan: Consensus-based clinical practice guidelines proposed by the japan society of hepatology (JSH) 2010 updated version. Dig Dis 2011; 29(3): 339-64. doi: 10.1159/000327577 PMID: 21829027
  25. Yeh YP, Hu TH, Cho PY, et al. Evaluation of abdominal ultrasonography mass screening for Hepatocellular carcinoma in Taiwan. Hepatology 2014; 59(5): 1840-9. doi: 10.1002/hep.26703 PMID: 24002724
  26. Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for Hepatocellular carcinoma surveillance in patients with cirrhosis: A meta-analysis. PLoS Med 2014; 11(4): e1001624.
  27. Pandya P, Kanwal F. Adding to the evidence base: Effectiveness of Hepatocellular carcinoma surveillance in clinical practice. Hepatol Commun 2017; 1(8): 723-5. doi: 10.1002/hep4.1087 PMID: 29404488
  28. Mittal S, Kanwal F, Ying J, et al. Effectiveness of surveillance for Hepatocellular carcinoma in clinical practice: A United States cohort. J Hepatol 2016; 65(6): 1148-54. doi: 10.1016/j.jhep.2016.07.025 PMID: 27476765
  29. Zhang B, Yang B. Combined α fetoprotein testing and ultrasonography as a screening test for primary liver cancer. J Med Screen 1999; 6(2): 108-10. doi: 10.1136/jms.6.2.108 PMID: 10444731
  30. Pocha C, Dieperink E, McMaken KA, Knott A, Thuras P, Ho SB. Surveillance for hepatocellular cancer with ultrasonography vs. computed tomography - A randomised study. Aliment Pharmacol Ther 2013; 38(3): 303-12. doi: 10.1111/apt.12370 PMID: 23750991
  31. Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of Hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. Gastroenterology 2018; 154(6): 1706-1718.e1. doi: 10.1053/j.gastro.2018.01.064 PMID: 29425931
  32. Singal A, Volk ML, Waljee A. Meta-analysis: Surveillance with ultrasound for early-stage Hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther 2009; 30(1): 37-47.
  33. European Association for the Study of the Liver. EASL-EORTC Clinical Practice Guidelines: Management of Hepatocellular carcinoma. J Hepatol 2012; 56(4): 908-43. doi: 10.1016/j.jhep.2011.12.001 PMID: 22424438
  34. Morgan TA, Maturen KE, Dahiya N, Sun MRM, Kamaya A. US LI-RADS: Ultrasound liver imaging reporting and data system for screening and surveillance of Hepatocellular carcinoma. Abdom Radiol 2018; 43(1): 41-55. doi: 10.1007/s00261-017-1317-y PMID: 28936543
  35. Kim SY, An J, Lim YS, et al. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of Hepatocellular carcinoma. JAMA Oncol 2017; 3(4): 456-63. doi: 10.1001/jamaoncol.2016.3147 PMID: 27657493
  36. Colli A, Fraquelli M, Casazza G, et al. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing Hepatocellular carcinoma: A systematic review. Am J Gastroenterol 2006; 101(3): 513-23. doi: 10.1111/j.1572-0241.2006.00467.x PMID: 16542288
  37. Hanna RF, Miloushev VZ, Tang A, et al. Comparative 13-year meta-analysis of the sensitivity and positive predictive value of ultrasound, CT, and MRI for detecting Hepatocellular carcinoma. Abdom Radiol 2016; 41(1): 71-90. doi: 10.1007/s00261-015-0592-8 PMID: 26830614
  38. Zheng SG, Xu HX, Liu LN. Management of Hepatocellular carcinoma: The role of contrast-enhanced ultrasound. World J Radiol 2014; 6(1): 7-14. doi: 10.4329/wjr.v6.i1.7 PMID: 24578787
  39. Burak KW, Sherman M. Hepatocellular carcinoma: Consensus, controversies and future directions. A report from the canadian association for the study of the liver Hepatocellular carcinoma meeting. Can J Gastroenterol Hepatol 2015; 29(4): 178-84. doi: 10.1155/2015/824263 PMID: 25965437
  40. Tanaka H, Iijima H, Nouso K, et al. Cost-effectiveness analysis on the surveillance for Hepatocellular carcinoma in liver cirrhosis patients using contrast-enhanced ultrasonography. Hepatol Res 2012; 42(4): 376-84. doi: 10.1111/j.1872-034X.2011.00936.x PMID: 22221694
  41. Claudon M, Dietrich C, Choi B, Cosgrove D, Kudo M, Nolsøe C. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver - Update 2012. Eur J Ultrasound 2012; 34(1): 11-29.
  42. Goossens N, Singal AG, King LY, et al. Cost-effectiveness of risk score-stratified Hepatocellular carcinoma screening in patients with cirrhosis. Clin Transl Gastroenterol 2017; 8(6): e101. doi: 10.1038/ctg.2017.26 PMID: 28640287
  43. Canellas R, Rosenkrantz AB, Taouli B, et al. Abbreviated MRI protocols for the abdomen. Radiographics 2019; 39(3): 744-58. doi: 10.1148/rg.2019180123 PMID: 30901285
  44. Besa C, Lewis S, Pandharipande PV, et al. Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid. Abdom Radiol 2017; 42(1): 179-90. doi: 10.1007/s00261-016-0841-5 PMID: 27448609
  45. Tillman BG, Gorman JD, Hru JM, et al. Diagnostic per-lesion performance of a simulated gadoxetate disodium-enhanced abbreviated MRI protocol for Hepatocellular carcinoma screening. Clin Radiol 2018; 73(5): 485-93. doi: 10.1016/j.crad.2017.11.013 PMID: 29246586
  46. Taouli B, Johnson RS, Hajdu CH, et al. Hepatocellular carcinoma: Perfusion quantification with dynamic contrast-enhanced MRI. AJR Am J Roentgenol 2013; 201(4): 795-800. doi: 10.2214/AJR.12.9798 PMID: 24059368
  47. Robertis RD, Martini PT, Demozzi E, et al. Prognostication and response assessment in liver and pancreatic tumors: The new imaging. World J Gastroenterol 2015; 21(22): 6794-808. doi: 10.3748/wjg.v21.i22.6794 PMID: 26078555
  48. Chen CW, Hsu LS, Weng JC, et al. Assessment of small Hepatocellular carcinoma: Perfusion quantification and time-concentration curve evaluation using color-coded and quantitative digital subtraction angiography. Medicine (Baltimore) 2018; 97(48): e13392. doi: 10.1097/MD.0000000000013392 PMID: 30508937
  49. Lim KS. Diffusion-weighted MRI of Hepatocellular carcinoma in cirrhosis. Clin Radiol 2014; 69(1): 1-10. doi: 10.1016/j.crad.2013.07.022 PMID: 24034549
  50. Li X, Li C, Wang R, Ren J, Yang J, Zhang Y. Combined application of gadoxetic acid disodium-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) in the diagnosis of chronic liver disease-induced Hepatocellular carcinoma: A meta-analysis. PLoS One 2015; 10(12): e0144247.
  51. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: Technique, analysis, and clinical applications. J Magn Reson Imaging 2013; 37(3): 544-55. doi: 10.1002/jmri.23731 PMID: 23423795
  52. Hennedige TP, Hallinan JTPD, Leung FP, et al. Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions. Eur Radiol 2016; 26(2): 398-406. doi: 10.1007/s00330-015-3835-8 PMID: 26032879
  53. Venkatesh SK, Yin M, Glockner JF, et al. MR elastography of liver tumors: Preliminary results. AJR Am J Roentgenol 2008; 190(6): 1534-40. doi: 10.2214/AJR.07.3123 PMID: 18492904
  54. Li YW, Chen ZG, Wang JC, Zhang ZM. Superparamagnetic iron oxide-enhanced magnetic resonance imaging for focal hepatic lesions: Systematic review and meta-analysis. World J Gastroenterol 2015; 21(14): 4334-44. doi: 10.3748/wjg.v21.i14.4334 PMID: 25892885
  55. Daldrup-Link HE. Ten things you might not know about iron oxide nanoparticles. Radiology 2017; 284(3): 616-29. doi: 10.1148/radiol.2017162759 PMID: 28825888
  56. Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI contrast agents: Classification and application (Review). Int J Mol Med 2016; 38(5): 1319-26. doi: 10.3892/ijmm.2016.2744 PMID: 27666161
  57. Zhao M, Liu Z, Dong L, et al. A GPC3-specific aptamer-mediated magnetic resonance probe for Hepatocellular carcinoma. Int J Nanomed 2018; 13: 4433-43. doi: 10.2147/IJN.S168268 PMID: 30122918
  58. Li W, Xiao X, Li X, et al. Detecting GPC3-expressing Hepatocellular carcinoma with L5 peptide-guided pretargeting approach: In vitro and in vivo MR imaging experiments. Contrast Media Mol Imaging 2018; 2018: 1-11. doi: 10.1155/2018/9169072 PMID: 30275801
  59. Zhang Z. Preparation and in vitro studies of MRI-specific superparamagnetic iron oxide antiGPC3 probe for Hepatocellular carcinoma. Int J Nanomed 2012; 4593(Aug): 4593. doi: 10.2147/IJN.S32196
  60. Shen JM, Li XX, Fan LL, et al. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in Hepatocellular carcinoma. Int J Nanomed 2017; 12: 1183-200. doi: 10.2147/IJN.S126887 PMID: 28243083
  61. Ma XH, Wang S, Liu SY, et al. Development and in vitro study of a bi-specific magnetic resonance imaging molecular probe for Hepatocellular carcinoma. World J Gastroenterol 2019; 25(24): 3030-43. doi: 10.3748/wjg.v25.i24.3030 PMID: 31293339
  62. Fischer MA, Kartalis N, Grigoriadis A, et al. Perfusion computed tomography for detection of Hepatocellular carcinoma in patients with liver cirrhosis. Eur Radiol 2015; 25(11): 3123-32. doi: 10.1007/s00330-015-3732-1 PMID: 25903707
  63. Ippolito D, Sironi S, Pozzi M, et al. Perfusion CT in cirrhotic patients with early stage Hepatocellular carcinoma: Assessment of tumor-related vascularization. Eur J Radiol 2010; 73(1): 148-52. doi: 10.1016/j.ejrad.2008.10.014 PMID: 19054640
  64. Gao SY, Zhang XP, Cui Y, et al. Fused monochromatic imaging acquired by single source dual energy CT in Hepatocellular carcinoma during arterial phase: An initial experience. Chin J Cancer Res 2014; 26(4): 437-43. PMID: 25232217
  65. Kaufmann S, Sauter A, Spira D, et al. Tin-filter enhanced dual-energy-CT: Image quality and accuracy of CT numbers in virtual noncontrast imaging. Acad Radiol 2013; 20(5): 596-603. doi: 10.1016/j.acra.2013.01.010 PMID: 23490736
  66. Matsuda M, Tsuda T, Kido T, et al. Dual-energy computed tomography in patients with small Hepatocellular carcinoma: Utility of noise-reduced monoenergetic images for the evaluation of washout and image quality in the equilibrium phase. J Comput Assist Tomogr 2018; 42(6): 937-43. doi: 10.1097/RCT.0000000000000752 PMID: 29659425
  67. Haug AR. Imaging of primary liver tumors with positron-emission tomography. Q J Nucl Med Mol Imaging 2017; 61(3): 292-300. doi: 10.23736/S1824-4785.17.02994-6 PMID: 28686007
  68. Cheung TT, Ho CL, Lo CM, et al. 11C-acetate and 18F-FDG PET/CT for clinical staging and selection of patients with Hepatocellular carcinoma for liver transplantation on the basis of Milan criteria: Surgeon’s perspective. J Nucl Med 2013; 54(2): 192-200. doi: 10.2967/jnumed.112.107516 PMID: 23321459
  69. Zhao J, Zhang Z, Nie D, et al. PET imaging of Hepatocellular carcinomas: 18F-fluoropropionic acid as a complementary radiotracer for 18F-fluorodeoxyglucose. Mol Imaging 2019; 18: 1536012118821032. doi: 10.1177/1536012118821032 PMID: 30799682
  70. Castilla-Lièvre MA, Franco D, Gervais P, et al. Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in Hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016; 43(5): 852-9. doi: 10.1007/s00259-015-3241-0 PMID: 26577938
  71. Zhang C, Zhao Y, Zhao N, et al. NIRF optical/PET dual-modal imaging of Hepatocellular carcinoma using heptamethine carbocyanine dye. Contrast Media Mol Imaging 2018; 2018: 1-12. doi: 10.1155/2018/4979746 PMID: 29706843
  72. Danciu M, Alexa-Stratulat T, Stefanescu C, et al. Terahertz spectroscopy and imaging: A cutting-edge method for diagnosing digestive cancers. Materials 2019; 12(9): 1519. doi: 10.3390/ma12091519 PMID: 31075912
  73. Rong L, Latychevskaia T, Chen C, et al. Terahertz in-line digital holography of human Hepatocellular carcinoma tissue. Sci Rep 2015; 5(1): 8445. doi: 10.1038/srep08445 PMID: 25676705
  74. Duan F, Wang YY, Xu DG, et al. Feasibility of terahertz imaging for discrimination of human Hepatocellular carcinoma. World J Gastrointest Oncol 2019; 11(2): 153-60. doi: 10.4251/wjgo.v11.i2.153 PMID: 30788041
  75. Chayvialle JAP, Ganguli PC. Radioimmunoassay of alpha-fetoprotein in human plasma. Lancet 1973; 301(7816): 1355-7. doi: 10.1016/S0140-6736(73)91676-0 PMID: 4122743
  76. Waldmann TA, McIntire KR. The use of a radioimmunoassay for alpha-fetoprotein in the diagnosis of malignancy. Cancer 1974; 34(S8) (Suppl.): 1510-5. doi: 10.1002/1097-0142(197410)34:8+3.0.CO;2-Y PMID: 4138906
  77. Gupta S, Bent S, Kohlwes J. Test characteristics of α-fetoprotein for detecting Hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis. Ann Intern Med 2003; 139(1): 46-50. doi: 10.7326/0003-4819-139-1-200307010-00012 PMID: 12834318
  78. Trevisani F, D’Intino PE, Morselli-Labate AM, et al. Serum α-fetoprotein for diagnosis of Hepatocellular carcinoma in patients with chronic liver disease: Influence of HBsAg and anti-HCV status. J Hepatol 2001; 34(4): 570-5. doi: 10.1016/S0168-8278(00)00053-2 PMID: 11394657
  79. Marrero JA, Feng Z, Wang Y, et al. Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early Hepatocellular carcinoma. Gastroenterology 2009; 137(1): 110-8. doi: 10.1053/j.gastro.2009.04.005 PMID: 19362088
  80. Gopal P, Yopp AC, Waljee AK, et al. Factors that affect accuracy of α-fetoprotein test in detection of Hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol 2014; 12(5): 870-7. doi: 10.1016/j.cgh.2013.09.053 PMID: 24095974
  81. El-Serag HB, Kanwal F, Davila JA, Kramer J, Richardson P. A new laboratory-based algorithm to predict development of Hepatocellular carcinoma in patients with hepatitis C and cirrhosis. Gastroenterology 2014; 146(5): 1249-1255.e1. doi: 10.1053/j.gastro.2014.01.045 PMID: 24462733
  82. Wang M, Devarajan K, Singal AG, et al. The doylestown algorithm: A test to improve the performance of AFP in the detection of Hepatocellular carcinoma. Cancer Prev Res 2016; 9(2): 172-9. doi: 10.1158/1940-6207.CAPR-15-0186 PMID: 26712941
  83. Wang K, Bai Y, Chen S, et al. Genetic correction of serum AFP level improves risk prediction of primary Hepatocellular carcinoma in the Dongfeng-Tongji cohort study. Cancer Med 2018; 7(6): 2691-8. doi: 10.1002/cam4.1481 PMID: 29696820
  84. Sato Y, Nakata K, Kato Y, et al. Early recognition of Hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med 1993; 328(25): 1802-6. doi: 10.1056/NEJM199306243282502 PMID: 7684823
  85. Li D, Mallory T, Satomura S. AFP-L3: A new generation of tumor marker for Hepatocellular carcinoma. Clin Chim Acta 2001; 313(1-2): 15-9. doi: 10.1016/S0009-8981(01)00644-1 PMID: 11694234
  86. Zhou Y, Qiu J, Liu S, et al. CFDP1 promotes Hepatocellular carcinoma progression through activating NEDD4/PTEN/PI3K/AKT signaling pathway. Cancer Med 2023; 12(1): 425-44. doi: 10.1002/cam4.4919 PMID: 35861040
  87. Yi X, Yu S, Bao Y. Alpha-fetoprotein-L3 in Hepatocellular carcinoma: A meta-analysis. Clin Chim Acta 2013; 425: 212-20. doi: 10.1016/j.cca.2013.08.005 PMID: 23954771
  88. Ido A. Highly sensitive lens culinaris agglutinin-reactive α-fetoprotein is useful for early detection of Hepatocellular carcinoma in patients with chronic liver disease. Oncol Rep 2011; 26(5): 1227-33. doi: 10.3892/or.2011.1425
  89. Chen H, Zhang Y, Li S, et al. Direct comparison of five serum biomarkers in early diagnosis of Hepatocellular carcinoma. Cancer Manag Res 2018; 10: 1947-58. doi: 10.2147/CMAR.S167036 PMID: 30022853
  90. Fu J, Li Y, Li Z, Li N. Clinical utility of decarboxylation prothrombin combined with α-fetoprotein for diagnosing primary Hepatocellular carcinoma. Biosci Rep 2018; 38(5): BSR20180044. doi: 10.1042/BSR20180044 PMID: 29717027
  91. Yu R, Ding S, Tan W, et al. Performance of protein induced by vitamin K absence or antagonist-II (PIVKA-II) for Hepatocellular carcinoma screening in Chinese population. Hepat Mon 2015; 15(7): e28806. doi: 10.5812/hepatmon.28806v2 PMID: 26300931
  92. Zhang K, Song P, Gao J, Li G, Zhao X, Zhang S. Perspectives on a combined test of multi serum biomarkers in China: Towards screening for and diagnosing Hepatocellular carcinoma at an earlier stage. Drug Discov Ther 2014; 8(3): 102-9. doi: 10.5582/ddt.2014.01026 PMID: 25031041
  93. Caviglia GP, Ribaldone DG, Abate ML, et al. Performance of protein induced by vitamin K absence or antagonist-II assessed by chemiluminescence enzyme immunoassay for Hepatocellular carcinoma detection: A meta-analysis. Scand J Gastroenterol 2018; 53(6): 734-40. doi: 10.1080/00365521.2018.1459824 PMID: 29667463
  94. Johnson PJ, Pirrie SJ, Cox TF, et al. The detection of Hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomarkers Prev 2014; 23(1): 144-53. doi: 10.1158/1055-9965.EPI-13-0870 PMID: 24220911
  95. Caviglia GP, Abate ML, Petrini E, Gaia S, Rizzetto M, Smedile A. Highly sensitive alpha-fetoprotein, Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein and des-gamma-carboxyprothrombin for Hepatocellular carcinoma detection. Hepatol Res 2016; 46(3): E130-5. doi: 10.1111/hepr.12544 PMID: 26082262
  96. Best J, Bilgi H, Heider D, et al. The GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly improves detection of BCLC early stage Hepatocellular carcinoma. Z Gastroenterol 2016; 54(12): 1296-305. doi: 10.1055/s-0042-119529 PMID: 27936479
  97. Berhane S, Toyoda H, Tada T, et al. Role of the GALAD and BALAD-2 serologic models in diagnosis of Hepatocellular carcinoma and prediction of survival in patients. Clin Gastroenterol Hepatol 2016; 14(6): 875-886.e6. doi: 10.1016/j.cgh.2015.12.042 PMID: 26775025
  98. Yang JD, Addissie BD, Mara KC, et al. GALAD score for Hepatocellular carcinoma detection in comparison with liver ultrasound and proposal of GALADUS score. Cancer Epidemiol Biomarkers Prev 2019; 28(3): 531-8. doi: 10.1158/1055-9965.EPI-18-0281 PMID: 30464023
  99. Capurro M, Wanless IR, Sherman M, et al. Glypican-3: A novel serum and histochemical marker for Hepatocellular carcinoma. Gastroenterology 2003; 125(1): 89-97. doi: 10.1016/S0016-5085(03)00689-9 PMID: 12851874
  100. Chen IP, Ariizumi S, Nakano M, Yamamoto M. Positive glypican-3 expression in early Hepatocellular carcinoma predicts recurrence after hepatectomy. J Gastroenterol 2014; 49(1): 117-25. doi: 10.1007/s00535-013-0793-2 PMID: 23532638
  101. Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for Hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2018; 38(2): 741-67. doi: 10.1002/med.21455 PMID: 28621802
  102. Zhu AX, Gold PJ, El-Khoueiry AB, et al. First-in-man phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced Hepatocellular carcinoma. Clin Cancer Res 2013; 19(4): 920-8. doi: 10.1158/1078-0432.CCR-12-2616 PMID: 23362325
  103. Zhang Q, Han Z, Tao J, et al. An innovative peptide with high affinity to GPC3 for Hepatocellular carcinoma diagnosis. Biomater Sci 2019; 7(1): 159-67. doi: 10.1039/C8BM01016A PMID: 30417190
  104. Li J, Wang T, Jin B, et al. Diagnosis accuracy of serum glypican-3 level in patients with Hepatocellular carcinoma: A systematic review with meta-analysis. Int J Biol Markers 2018; 33(4): 353-63. doi: 10.1177/1724600818784409 PMID: 30071741
  105. Jia X, Liu J, Gao Y, Huang Y, Du Z. Diagnosis accuracy of serum glypican-3 in patients with Hepatocellular carcinoma: A systematic review with meta-analysis. Arch Med Res 2014; 45(7): 580-8. doi: 10.1016/j.arcmed.2014.11.002 PMID: 25446613
  106. Sun B, Huang Z, Wang B, et al. Significance of Glypican-3 (GPC3) expression in Hepatocellular cancer diagnosis. Med Sci Monit 2017; 23: 850-5. doi: 10.12659/MSM.899198 PMID: 28207681
  107. Tahon AM, El-Ghanam MZ, Zaky S, et al. Significance of Glypican-3 in early detection of Hepatocellular carcinoma in cirrhotic patients. J Gastrointest Cancer 2019; 50(3): 434-41. doi: 10.1007/s12029-018-0095-2 PMID: 29623600
  108. Ba MC, Long H, Tang YQ, Cui SZ. GP73 expression and its significance in the diagnosis of Hepatocellular carcinoma: A review. Int J Clin Exp Pathol 2012; 5(9): 874-81. PMID: 23119104
  109. Dai M, Chen X, Liu X, Peng Z, Meng J, Dai S. Diagnostic value of the combination of golgi protein 73 and alpha-fetoprotein in Hepatocellular carcinoma: A meta-analysis PLoS One 2015; 10(10): e0140067. doi: 10.1371/journal.pone.0140067
  110. Jiao C, Cui L, Piao J, Qi Y, Yu Z. Clinical significance and expression of serum Golgi protein 73 in primary Hepatocellular carcinoma. J Cancer Res Ther 2018; 14(6): 1239-44.
  111. Witjes CDM, van Aalten SM, Steyerberg EW, et al. Recently introduced biomarkers for screening of Hepatocellular carcinoma: A systematic review and meta-analysis. Hepatol Int 2013; 7(1): 59-64. doi: 10.1007/s12072-012-9374-3 PMID: 23519638
  112. Xu WJ, Guo BL, Han YG, Shi L, Ma WS. Diagnostic value of alpha-fetoprotein-L3 and Golgi protein 73 in Hepatocellular carcinomas with low AFP levels. Tumour Biol 2014; 35(12): 12069-74. doi: 10.1007/s13277-014-2506-8 PMID: 25209179
  113. Xu W, Zhang Z, Zhang Y, Wang Y, Xu L. Alpha-fetoprotein-L3 and Golgi protein 73 may serve as candidate biomarkers for diagnosing alpha-fetoprotein-negative Hepatocellular carcinoma. OncoTargets Ther 2015; 123(Dec): 123. doi: 10.2147/OTT.S90732
  114. Tian L, Wang Y, Xu D, et al. Serological AFP/Golgi protein 73 could be a new diagnostic parameter of hepatic diseases. Int J Cancer 2011; 129(8): 1923-31. doi: 10.1002/ijc.25838 PMID: 21140449
  115. Li B, Li B, Guo T, et al. The clinical values of serum markers in the early prediction of Hepatocellular carcinoma. BioMed Res Int 2017; 2017: 1-11. doi: 10.1155/2017/5358615 PMID: 28540298
  116. Xiao J, Long F, Peng T, et al. Development and potential application of a simultaneous multiplex assay of Golgi protein 73 and alpha-fetoprotein for Hepatocellular carcinoma diagnosis. Eur Rev Med Pharmacol Sci 2019; 23(8): 3302-10. PMID: 31081083
  117. Wen Y, Jeong S, Xia Q, Kong X. Role of osteopontin in liver diseases. Int J Biol Sci 2016; 12(9): 1121-8. doi: 10.7150/ijbs.16445 PMID: 27570486
  118. Shang S, Plymoth A, Ge S, et al. Identification of osteopontin as a novel marker for early Hepatocellular carcinoma. Hepatology 2012; 55(2): 483-90. doi: 10.1002/hep.24703 PMID: 21953299
  119. Abu El Makarem MA, Abdel-Aleem A, Ali A, et al. Diagnostic significance of plasma osteopontin in hepatitis C virus-related Hepatocellular carcinoma. Ann Hepatol 2011; 10(3): 296-305. doi: 10.1016/S1665-2681(19)31541-8 PMID: 21677331
  120. Kim J, Ki SS, Lee SD, et al. Elevated plasma osteopontin levels in patients with Hepatocellular carcinoma. Am J Gastroenterol 2006; 101(9): 2051-9. doi: 10.1111/j.1572-0241.2006.00679.x PMID: 16848813
  121. Duarte-Salles T, Misra S, Stepien M, et al. Circulating osteopontin and prediction of Hepatocellular carcinoma development in a large European population. Cancer Prev Res 2016; 9(9): 758-65. doi: 10.1158/1940-6207.CAPR-15-0434 PMID: 27339170
  122. Sun T, Tang Y, Sun D, Bu Q, Li P. Osteopontin versus alpha-fetoprotein as a diagnostic marker for Hepatocellular carcinoma: A meta-analysis. OncoTargets Ther 2018; 11: 8925-35. doi: 10.2147/OTT.S186230 PMID: 30573979
  123. Ge T, Shen Q, Wang N, et al. Diagnostic values of alpha-fetoprotein, dickkopf-1, and osteopontin for Hepatocellular carcinoma. Med Oncol 2015; 32(3): 59. doi: 10.1007/s12032-014-0367-z PMID: 25652109
  124. Chae WJ, Bothwell ALM. Dickkopf1: An immunomodulatory ligand and Wnt antagonist in pathological inflammation. Differentiation 2019; 108: 33-9. doi: 10.1016/j.diff.2019.05.003 PMID: 31221431
  125. Shen Q, Fan J, Yang XR, et al. Serum DKK1 as a protein biomarker for the diagnosis of Hepatocellular carcinoma: A large-scale, multicentre study. Lancet Oncol 2012; 13(8): 817-26. doi: 10.1016/S1470-2045(12)70233-4 PMID: 22738799
  126. Zhou Y, Li W, Tseng Y, Zhang J, Liu J. Developing slow-off dickkopf-1 aptamers for early-diagnosis of Hepatocellular carcinoma. Talanta 2019; 194: 422-9. doi: 10.1016/j.talanta.2018.10.014 PMID: 30609553
  127. Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: New perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev 2015; 81: 62-74. doi: 10.1016/j.addr.2014.10.029 PMID: 25450260
  128. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol 2012; 6(6): 590-610. doi: 10.1016/j.molonc.2012.09.006 PMID: 23102669
  129. Thurnherr T, Mah WC, Lei Z, Jin Y, Rozen SG, Lee CG. Differentially expressed miRNAs in Hepatocellular carcinoma target genes in the genetic information processing and metabolism pathways. Sci Rep 2016; 6(1): 20065. doi: 10.1038/srep20065 PMID: 26817861
  130. Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014; 11(3): 145-56. doi: 10.1038/nrclinonc.2014.5 PMID: 24492836
  131. Li W, Xie L, He X, et al. Diagnostic and prognostic implications of microRNAs in human Hepatocellular carcinoma. Int J Cancer 2008; 123(7): 1616-22. doi: 10.1002/ijc.23693 PMID: 18649363
  132. Schütte K, Schulz C, Link A, Malfertheiner P. Current biomarkers for Hepatocellular carcinoma: Surveillance, diagnosis and prediction of prognosis. World J Hepatol 2014; 7(2): 139-49. doi: 10.4254/wjh.v7.i2.139 PMID: 25729470
  133. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513-8. doi: 10.1073/pnas.0804549105 PMID: 18663219
  134. Peng C, Ye Y, Wang Z, et al. Circulating microRNAs for the diagnosis of Hepatocellular carcinoma. Dig Liver Dis 2019; 51(5): 621-31. doi: 10.1016/j.dld.2018.12.011 PMID: 30744930
  135. Ning S, Liu H, Gao B, Wei W, Yang A, Li J. MiR-155, miR-96 and miR-99a as potential diagnostic and prognostic tools for the clinical management of Hepatocellular carcinoma. Oncol Lett 2019; 18(3): 3381-7.
  136. Huang JT, Liu SM, Ma H, et al. Systematic review and meta-analysis: Circulating miRNAs for diagnosis of Hepatocellular carcinoma. J Cell Physiol 2016; 231(2): 328-35. doi: 10.1002/jcp.25135 PMID: 26291451
  137. Tat Trung N, Duong DC, Van Tong H, Hien TTT, Hoan PQ, Bang MH. Optimisation of quantitative miRNA panels to consolidate the diagnostic surveillance of HBV-related Hepatocellular carcinoma. PLoS One 2018; 13(4): e0196081.
  138. Elemeery MN, Badr AN, Mohamed MA, Ghareeb DA. Validation of a serum microRNA panel as biomarkers for early diagnosis of Hepatocellular carcinoma post-hepatitis C infection in Egyptian patients. World J Gastroenterol 2017; 23(21): 3864-75. doi: 10.3748/wjg.v23.i21.3864 PMID: 28638226
  139. Zuo D, Chen L, Liu X, et al. Combination of miR-125b and miR-27a enhances sensitivity and specificity of AFP-based diagnosis of Hepatocellular carcinoma. Tumour Biol 2016; 37(5): 6539-49. doi: 10.1007/s13277-015-4545-1 PMID: 26637228
  140. Chen L, Chu F, Cao Y, Shao J, Wang F. Serum miR-182 and miR-331-3p as diagnostic and prognostic markers in patients with Hepatocellular carcinoma. Tumour Biol 2015; 36(10): 7439-47. doi: 10.1007/s13277-015-3430-2 PMID: 25903466
  141. Pfeffer SR, Yang CH, Pfeffer LM. The role of miR-21 in cancer. Drug Dev Res 2015; 76(6): 270-7. doi: 10.1002/ddr.21257 PMID: 26082192
  142. Wang H, Hou L, Li A, Duan Y, Gao H, Song X. Expression of serum exosomal microRNA-21 in human Hepatocellular carcinoma. BioMed Res Int 2014; 2014: 1-5. doi: 10.1155/2014/864894 PMID: 24963487
  143. Fornari F, Ferracin M, Trerè D, Milazzo M, Marinelli S, Galassi M. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC. PLoS One 2015; 10(10): e0141448.
  144. Sohn W, Kim J, Kang SH, et al. Serum exosomal microRNAs as novel biomarkers for Hepatocellular carcinoma. Exp Mol Med 2015; 47(9): e184-4. doi: 10.1038/emm.2015.68 PMID: 26380927
  145. Xue X, Zhao Y, Wang X, Qin L, Hu R. Development and validation of serum exosomal microRNAs as diagnostic and prognostic biomarkers for Hepatocellular carcinoma. J Cell Biochem 2019; 120(1): 135-42. doi: 10.1002/jcb.27165 PMID: 30238497
  146. Wang Y, Zhang C, Zhang P, et al. Serum exosomal micro RNA s combined with alpha-fetoprotein as diagnostic markers of Hepatocellular carcinoma. Cancer Med 2018; 7(5): 1670-9. doi: 10.1002/cam4.1390 PMID: 29573235
  147. Moldogazieva NT, Zavadskiy SP, Astakhov DV, et al. Differentially expressed non-coding RNAs and their regulatory networks in liver cancer. Heliyon 2023; 9(9): e19223. doi: 10.1016/j.heliyon.2023.e19223 PMID: 37662778
  148. Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 2013; 26(2): 155-65. doi: 10.1038/modpathol.2012.160 PMID: 22996375
  149. Di Gesualdo F, Capaccioli S, Lulli M. A pathophysiological view of the long non-coding RNA world. Oncotarget 2014; 5(22): 10976-96. doi: 10.18632/oncotarget.2770 PMID: 25428918
  150. Qiu L, Tang Q, Li G, Chen K. Long non-coding RNAs as biomarkers and therapeutic targets: Recent insights into Hepatocellular carcinoma. Life Sci 2017; 191: 273-82. doi: 10.1016/j.lfs.2017.10.007 PMID: 28987633
  151. Peng L, Yuan XQ, Zhang CY, et al. The emergence of long non- coding RNAs in Hepatocellular carcinoma: An update. J Cancer 2018; 9(14): 2549-58. doi: 10.7150/jca.24560 PMID: 30026854
  152. Li J, Wang X, Tang J, et al. HULC and Linc00152 act as novel biomarkers in predicting diagnosis of Hepatocellular carcinoma. Cell Physiol Biochem 2015; 37(2): 687-96. doi: 10.1159/000430387 PMID: 26356260
  153. Zheng Z, Pang C, Yang Y, Duan Q, Zhang J, Liu W. Serum long noncoding RNA urothelial carcinoma-associated 1: A novel biomarker for diagnosis and prognosis of Hepatocellular carcinoma. J Int Med Res 2018; 46(1): 348-56. doi: 10.1177/0300060517726441 PMID: 28856933
  154. Konishi H, Ichikawa D, Yamamoto Y, et al. Plasma level of metastasis-associated lung adenocarcinoma transcript 1 is associated with liver damage and predicts development of Hepatocellular carcinoma. Cancer Sci 2016; 107(2): 149-54. doi: 10.1111/cas.12854 PMID: 26614531
  155. Li Y, He X, Zhang X, et al. RMI2 is a prognostic biomarker and promotes tumor growth in Hepatocellular carcinoma. Clin Exp Med 2022; 22(2): 229-43. doi: 10.1007/s10238-021-00742-8 PMID: 34275027
  156. Chao Y, Zhou D. lncRNA-D16366 is a potential biomarker for diagnosis and prognosis of Hepatocellular carcinoma. Med Sci Monit 2019; 25: 6581-6. doi: 10.12659/MSM.915100 PMID: 31475695
  157. Chen S, Zhang Y, Wu X, Zhang C, Li G. Diagnostic value of lncRNAs as biomarker in Hepatocellular carcinoma: An updated meta- analysis. Can J Gastroenterol Hepatol 2018; 2018: 1-12. doi: 10.1155/2018/8410195 PMID: 30410873
  158. Tang J, Jiang R, Deng L, Zhang X, Wang K, Sun B. Circulation long non-coding RNAs act as biomarkers for predicting tumorigenesis and metastasis in Hepatocellular carcinoma. Oncotarget 2015; 6(6): 4505-15. doi: 10.18632/oncotarget.2934 PMID: 25714016
  159. Zhang C, Yang X, Qi Q, Gao Y, Wei Q, Han S. lncRNA-HEIH in serum and exosomes as a potential biomarker in the HCV-related Hepatocellular carcinoma. Cancer Biomark 2018; 21(3): 651-9. doi: 10.3233/CBM-170727 PMID: 29286922
  160. Xu H, Chen Y, Dong X, Wang X. Serum exosomal long noncoding RNAs ENSG00000258332.1 and LINC00635 for the diagnosis and prognosis of Hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 2018; 27(6): 710-6. doi: 10.1158/1055-9965.EPI-17-0770 PMID: 29650788
  161. Lee S, Lee HJ, Kim JH, Lee HS, Jang JJ, Kang GH. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol 2003; 163(4): 1371-8. doi: 10.1016/S0002-9440(10)63495-5 PMID: 14507645
  162. Li J, Han X, Yu X, et al. Clinical applications of liquid biopsy as prognostic and predictive biomarkers in Hepatocellular carcinoma: Circulating tumor cells and circulating tumor DNA. J Exp Clin Cancer Res 2018; 37(1): 213. doi: 10.1186/s13046-018-0893-1 PMID: 30176913
  163. Jain S, Xie L, Boldbaatar B, et al. Differential methylation of the promoter and first exon of the RASSF1A gene in hepatocarcinogenesis. Hepatol Res 2015; 45(11): 1110-23. doi: 10.1111/hepr.12449 PMID: 25382672
  164. Jain S, Wojdacz TK, Su YH. Challenges for the application of DNA methylation biomarkers in molecular diagnostic testing for cancer. Expert Rev Mol Diagn 2013; 13(3): 283-94. doi: 10.1586/erm.13.9 PMID: 23570406
  165. Toyota M, Issa JPJ. Epigenetic changes in solid and hematopoietic tumors. Semin Oncol 2005; 32(5): 521-30. doi: 10.1053/j.seminoncol.2005.07.003 PMID: 16210093
  166. Liao W, Mao Y, Ge P, et al. Value of quantitative and qualitative analyses of circulating cell-free DNA as diagnostic tools for Hepatocellular carcinoma: A meta-analysis. Medicine 2015; 94(14): e722. doi: 10.1097/MD.0000000000000722 PMID: 25860220
  167. Zhang YJ, Wu HC, Shen J, et al. Predicting Hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin Cancer Res 2007; 13(8): 2378-84. doi: 10.1158/1078-0432.CCR-06-1900 PMID: 17438096
  168. Huang ZH, Hu Y, Hua D, Wu YY, Song MX, Cheng ZH. Quantitative analysis of multiple methylated genes in plasma for the diagnosis and prognosis of Hepatocellular carcinoma. Exp Mol Pathol 2011; 91(3): 702-7. doi: 10.1016/j.yexmp.2011.08.004 PMID: 21884695
  169. Xu RH, Wei W, Krawczyk M. Circulating tumour DNA methylation markers for diagnosis and prognosis of Hepatocellular carcinoma. Nat Mater 2017; 16(11): 1155-61.
  170. Rao CV, Asch AS, Yamada HY. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer. Carcinogenesis 2017; 38(1): 2-11. doi: 10.1093/carcin/bgw118 PMID: 27838634
  171. Liao W, Yang H, Xu H, et al. Noninvasive detection of tumor-associated mutations from circulating cell-free DNA in Hepatocellular carcinoma patients by targeted deep sequencing. Oncotarget 2016; 7(26): 40481-90. doi: 10.18632/oncotarget.9629 PMID: 27248174
  172. Kirk GD, Lesi OA, Mendy M, et al. 249ser TP53 mutation in plasma DNA, hepatitis B viral infection, and risk of Hepatocellular carcinoma. Oncogene 2005; 24(38): 5858-67. doi: 10.1038/sj.onc.1208732 PMID: 16007211
  173. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359(6378): 926-30. doi: 10.1126/science.aar3247
  174. Huang A, Zhang X, Zhou SL, et al. Detecting circulating tumor DNA in Hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity. J Cancer 2016; 7(13): 1907-14. doi: 10.7150/jca.15823 PMID: 27698932
  175. Feng J, Zhu R, Chang C, Yu L, Cao F, Zhu G. CK19 and glypican 3 expression profiling in the prognostic indication for patients with HCC after surgical resection. PLoS One 2016; 11(3): e0151501.
  176. Yu JP, Xu XG, Ma RJ, et al. Development of a clinical chemiluminescent immunoassay for serum GPC3 and simultaneous measurements alone with AFP and CK19 in diagnosis of Hepatocellular carcinoma. J Clin Lab Anal 2015; 29(2): 85-93. doi: 10.1002/jcla.21733 PMID: 24687454
  177. Sun DW, Zhang YY, Sun XD. Prognostic value of cytokeratin 19 in Hepatocellular carcinoma: A meta-analysis. Clin Chim Acta 2015; 448: 161-9.
  178. Lee JI, Lee JW, Kim JM, Kim JK, Chung HJ, Kim YS. Prognosis of Hepatocellular carcinoma expressing cytokeratin 19: Comparison with other liver cancers. World J Gastroenterol 2012; 18(34): 4751-7. doi: 10.3748/wjg.v18.i34.4751 PMID: 23002345
  179. Kowalik MA, Sulas P, Ledda-Columbano GM, Giordano S, Columbano A, Perra A. Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis. Oncotarget 2015; 6(36): 38749-63. doi: 10.18632/oncotarget.5501 PMID: 26452031
  180. Muramatsu T. Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad, Ser B, Phys Biol Sci 2010; 86(4): 410-25. doi: 10.2183/pjab.86.410 PMID: 20431264
  181. Muramatsu T. Midkine and pleiotrophin: Two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 2002; 132(3): 359-71. doi: 10.1093/oxfordjournals.jbchem.a003231 PMID: 12204104
  182. Zhu WW, Guo JJ, Guo L, et al. Evaluation of midkine as a diagnostic serum biomarker in Hepatocellular carcinoma. Clin Cancer Res 2013; 19(14): 3944-54. doi: 10.1158/1078-0432.CCR-12-3363 PMID: 23719264
  183. Shaheen KYA, Abdel-Mageed AI, Safwat E, AlBreedy AM. The value of serum midkine level in diagnosis of Hepatocellular carcinoma. Int J Hepatol 2015; 2015: 1-6. doi: 10.1155/2015/146389 PMID: 25737783
  184. Lokman NA, Ween MP, Oehler MK, Ricciardelli C. The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron 2011; 4(2): 199-208. doi: 10.1007/s12307-011-0064-9 PMID: 21909879
  185. Zhang H, Yao M, Wu W, et al. Up-regulation of annexin A2 expression predicates advanced clinicopathological features and poor prognosis in Hepatocellular carcinoma. Tumour Biol 2015; 36(12): 9373-83. doi: 10.1007/s13277-015-3678-6 PMID: 26109000
  186. Sun Y, Gao G, Cai J, et al. Annexin A2 is a discriminative serological candidate in early Hepatocellular carcinoma. Carcinogenesis 2013; 34(3): 595-604. doi: 10.1093/carcin/bgs372 PMID: 23188673
  187. Biasiolo A, Trotta E, Fasolato S, et al. Squamous cell carcinoma antigen-IgM is associated with Hepatocellular carcinoma in patients with cirrhosis: A prospective study. Dig Liver Dis 2016; 48(2): 197-202. doi: 10.1016/j.dld.2015.10.022 PMID: 26614642
  188. Pozzan C, Cardin R, Piciocchi M, et al. Diagnostic and prognostic role of SCCA-IgM serum levels in Hepatocellular carcinoma (HCC). J Gastroenterol Hepatol 2014; 29(8): 1637-44. doi: 10.1111/jgh.12576 PMID: 24635038
  189. Giannelli G, Marinosci F, Trerotoli P, et al. SCCA antigen combined with alpha-fetoprotein as serologic markers of HCC. Int J Cancer 2005; 117(3): 506-9. doi: 10.1002/ijc.21189 PMID: 15906357
  190. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37(3): 646-50. PMID: 837366
  191. Swystun LL, Mukherjee S, Liaw PC. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost 2011; 9(11): 2313-21. doi: 10.1111/j.1538-7836.2011.04465.x PMID: 21838758
  192. García-Olmo DC, Domínguez C, García-Arranz M, et al. Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res 2010; 70(2): 560-7. doi: 10.1158/0008-5472.CAN-09-3513 PMID: 20068178
  193. Jackson PE, Qian GS, Friesen MD, et al. Specific p53 mutations detected in plasma and tumors of Hepatocellular carcinoma patients by electrospray ionization mass spectrometry. Cancer Res 2001; 61(1): 33-5. PMID: 11196182
  194. Kirk GD, Camus-Randon AM, Mendy M, et al. Ser-249 p53 mutations in plasma DNA of patients with Hepatocellular carcinoma from The Gambia. J Natl Cancer Inst 2000; 92(2): 148-53. doi: 10.1093/jnci/92.2.148 PMID: 10639517
  195. Lesi OA, Kirk GD, Sam O. Ser-249TP53 mutation in tumour and plasma DNA of Hepatocellular carcinoma patients from a high incidence area in the Gambia, West Africa. Int J Cancer 2004; 110(3): 374-9.
  196. Kirk GD, Lesi OA, Mendy M, et al. The gambia liver cancer study: Infection with hepatitis B and C and the risk of Hepatocellular carcinoma in West Africa. Hepatology 2004; 39(1): 211-9. doi: 10.1002/hep.20027 PMID: 14752840
  197. Hosny G, Farahat N, Tayel H, Hainaut P. Ser-249 TP53 and CTNNB1 mutations in circulating free DNA of Egyptian patients with Hepatocellular carcinoma versus chronic liver diseases. Cancer Lett 2008; 264(2): 201-8. doi: 10.1016/j.canlet.2008.01.031 PMID: 18313840
  198. Wang J, Qin Y, Li B, Sun Z, Yang B. Detection of aberrant promoter methylation of GSTP1 in the tumor and serum of Chinese human primary Hepatocellular carcinoma patients. Clin Biochem 2006; 39(4): 344-8. doi: 10.1016/j.clinbiochem.2006.01.008 PMID: 16527261
  199. Wong IHN, Lo YM, Yeo W, Lau WY, Johnson PJ. Frequent p15 promoter methylation in tumor and peripheral blood from Hepatocellular carcinoma patients. Clin Cancer Res 2000; 6(9): 3516-21. PMID: 10999738
  200. Wong IHN, Lo YM, Zhang J, et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 1999; 59(1): 71-3. PMID: 9892188
  201. Yeo W, Wong N, Wong WL, Lai PBS, Zhong S, Johnson PJ. High frequency of promoter hypermethylation of RASSF1A in tumor and plasma of patients with Hepatocellular carcinoma. Liver Int 2005; 25(2): 266-72. doi: 10.1111/j.1478-3231.2005.01084.x PMID: 15780049
  202. Chan KCA, Lai PBS, Mok TSK, et al. Quantitative analysis of circulating methylated DNA as a biomarker for Hepatocellular carcinoma. Clin Chem 2008; 54(9): 1528-36. doi: 10.1373/clinchem.2008.104653 PMID: 18653827
  203. Shi M, Chen MS, Sekar K, Tan CK, Ooi LL, Hui KM. A blood-based three-gene signature for the non-invasive detection of early human Hepatocellular carcinoma. Eur J Cancer 2014; 50(5): 928-36. doi: 10.1016/j.ejca.2013.11.026 PMID: 24332572
  204. Banales JM, Iñarrairaegui M, Arbelaiz A, et al. Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, Hepatocellular carcinoma, and primary sclerosing cholangitis. Hepatology 2019; 70(2): 547-62. doi: 10.1002/hep.30319 PMID: 30325540
  205. Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X. Serum and urine metabolite profiling reveals potential biomarkers of human Hepatocellular carcinoma. Mol Cell Proteomics 2011; 10(7): M110.004945. .
  206. Wang W, Wei C. Advances in the early diagnosis of Hepatocellular carcinoma. Genes Dis 2020; 7(3): 308-19. doi: 10.1016/j.gendis.2020.01.014 PMID: 32884985
  207. Ladep NG, Dona AC, Lewis MR, et al. Discovery and validation of urinary metabotypes for the diagnosis of Hepatocellular carcinoma in West Africans. Hepatology 2014; 60(4): 1291-301. doi: 10.1002/hep.27264 PMID: 24923488
  208. Deng K, Xing J, Xu G, et al. Urinary biomarkers for Hepatocellular carcinoma: Current knowledge for clinicians. Cancer Cell Int 2023; 23(1): 239. doi: 10.1186/s12935-023-03092-5 PMID: 37833757
  209. Shao Y, Zhu B, Zheng R, et al. Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in Hepatocellular carcinoma biomarker discovery. J Proteome Res 2015; 14(2): 906-16. doi: 10.1021/pr500973d PMID: 25483141
  210. Sterling RK, Jeffers L, Gordon F, et al. Utility of Lens culinaris agglutinin-reactive fraction of α-fetoprotein and des-gamma-carboxy prothrombin, alone or in combination, as biomarkers for Hepatocellular carcinoma. Clin Gastroenterol Hepatol 2009; 7(1): 104-13. doi: 10.1016/j.cgh.2008.08.041 PMID: 18849011
  211. Giannelli G, Fransvea E, Trerotoli P, et al. Clinical validation of combined serological biomarkers for improved Hepatocellular carcinoma diagnosis in 961 patients. Clin Chim Acta 2007; 383(1-2): 147-52. doi: 10.1016/j.cca.2007.05.014 PMID: 17582392
  212. Xia Q, Li Z, Zheng J, et al. Identification of novel biomarkers for Hepatocellular carcinoma using transcriptome analysis. J Cell Physiol 2019; 234(4): 4851-63. doi: 10.1002/jcp.27283 PMID: 30272824
  213. Liu J, Han F, Ding J, Liang X, Liu J, Huang D. Identification of multiple hub genes and pathways in Hepatocellular carcinoma: A bioinformatics analysis. Biomed Res Int 2021; 2021: 8849415. doi: 10.1155/2021/8849415
  214. Teng L, Wang K, Liu Y, Ma Y, Chen W, Bi L. Based on integrated bioinformatics analysis identification of biomarkers in Hepatocellular carcinoma patients from different regions. BioMed Res Int 2019; 2019: 1-17. doi: 10.1155/2019/1742341 PMID: 31886176
  215. Li L, Lei Q, Zhang S, Kong L, Qin B. Screening and identification of key biomarkers in Hepatocellular carcinoma: Evidence from bioinformatic analysis. Oncol Rep 2017; 38(5): 2607-18. doi: 10.3892/or.2017.5946 PMID: 28901457
  216. Shen S, Kong J, Qiu Y, Yang X, Wang W, Yan L. Identification of core genes and outcomes in Hepatocellular carcinoma by bioinformatics analysis. J Cell Biochem 2019; 120(6): 10069-81. doi: 10.1002/jcb.28290 PMID: 30525236
  217. Ren Z, Li A, Jiang J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early Hepatocellular carcinoma. Gut 2019; 68(6): 1014-23. doi: 10.1136/gutjnl-2017-315084 PMID: 30045880

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers