Network Pharmacology Study on Herb Pair Bletilla striata-Galla chinensis in the Treatment of Chronic Skin Ulcers
- Authors: Wang Y.1, Ding T.1, Jiang X.1
-
Affiliations:
- School of Nursing, Nanjing University of Chinese Medicine
- Issue: Vol 30, No 17 (2024)
- Pages: 1354-1376
- Section: Immunology, Inflammation & Allergy
- URL: https://snv63.ru/1381-6128/article/view/645691
- DOI: https://doi.org/10.2174/0113816128288490240322055201
- ID: 645691
Cite item
Full Text
Abstract
Background::Herb pair Bletilla striata-Galla chinensis (BS-GC) is a classic combination of topical traditional Chinese medicine formulae in the treatment of chronic skin ulcers (CSUs).
Objective::The aim of this study is to explore the effective active ingredients of BS-GC, as well as the core targets and signal transduction pathways of its action on CSUs.
Methods::The ingredients of BS-GC were obtained from TCMSP and HERB databases. The targets of all active ingredients were retrieved from the SwissTargetPrediction database. The targets of CSUs were obtained from OMIM, GeneCards, Drugbank, and DisGeNET databases. A drug-disease target protein-protein interaction (PPI) network was constructed to select the most core targets, and an herb-ingredient-target network was built by utilizing Cytoscape 3.7.2. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG) analysis and verified the results of network pharmacology through molecular docking.
Results::A total of 40 active ingredients from the herb pair BS-GC were initially screened, and a total of 528 targets were retrieved. Meanwhile, the total number of CSU targets was 1032. Then, the number of common targets between BS-GC and CSUs was 107. The 13 core targets of herb pair BS-GC with CSUs were filtered out according to the PPI network, including AKT1, TNF, EGFR, BCL2, HIF1A, MMP-9, etc. The 5 main core active ingredients were 1-(4-Hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene-4,7-diol, 1-(4- Hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol, physcion, dihydromyricetin, and myricetin. The main biological processes were inflammation, oxidative stress, and immune response, involving the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, NF-κB signaling pathway, and calcium signaling pathway. Molecular docking results showed good binding activity between the 5 main core active ingredients and 13 core targets.
Conclusion::This study predicted the core targets and signal transduction pathways in the treatment of CSUs to provide a reference for further molecular mechanism research.
About the authors
Yue Wang
School of Nursing, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Tengteng Ding
School of Nursing, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Xing Jiang
School of Nursing, Nanjing University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Charles J, Harrison C, Britt H. Chronic skin ulcers. Aust Fam Physician 2014; 43(9): 587. PMID: 25225640
- Bettle G III, Bell DP, Bakewell SJ. A novel comprehensive therapeutic approach to the challenges of chronic wounds: A brief review and clinical experience report. Adv Ther 2024; 41(2): 492-508. doi: 10.1007/s12325-023-02742-4 PMID: 38104037
- Graves N, Phillips CJ, Harding K. A narrative review of the epidemiology and economics of chronic wounds. Br J Dermatol 2022; 187(2): 141-8. doi: 10.1111/bjd.20692 PMID: 34549421
- Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146: 97-125. doi: 10.1016/j.addr.2018.09.010 PMID: 30267742
- Zhou X, Guo Y, Yang K, Liu P, Wang J. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. J Ethnopharmacol 2022; 282: 114662. doi: 10.1016/j.jep.2021.114662 PMID: 34555452
- Werdin F, Tenenhaus M, Rennekampff HO. Chronic wound care. Lancet 2008; 372(9653): 1860-2. doi: 10.1016/S0140-6736(08)61793-6 PMID: 19041788
- Jones RE, Foster DS, Longaker MT. Management of chronic wounds-2018. JAMA 2018; 320(14): 1481-2. doi: 10.1001/jama.2018.12426 PMID: 30326512
- Freedman BR, Hwang C, Talbot S, Hibler B, Matoori S, Mooney DJ. Breakthrough treatments for accelerated wound healing. Sci Adv 2023; 9(20): eade7007. doi: 10.1126/sciadv.ade7007 PMID: 37196080
- Li FL, Wang GC, Wu BQ. Clinical application of traditional Chinese medicine powder in the treatment of acute and chronic wounds. Int Wound J 2023; 20(3): 799-805. doi: 10.1111/iwj.13925 PMID: 36148625
- Liu FS, Li Y, Guo XS, Liu RC, Zhang HY, Li Z. Advances in traditional Chinese medicine as adjuvant therapy for diabetic foot. World J Diabetes 2022; 13(10): 851-60. doi: 10.4239/wjd.v13.i10.851 PMID: 36312004
- Zhou E, Xu E, Zhang N, et al. Discussion on medication law of TCM external therapy for the treatment of non-astringent sore based on data mining. Chin J Lib Inf Sci Tradit Chin Med 2023; 47: 39-43.
- Liu X, Xu D, Qu H, et al. Effect of traditional Chinese medicine sitting bath and internal administration combined with Western medicine on pain and wound healing after damp-heat low anal fistula surgery. TCM Res 2022; 35: 30-5.
- Yang S. Clinical observation of 30 cases of diabetic foot treated with internal and external combination. New J Tradit Chin Med 2008; 40: 28-9.
- Xu D, Pan Y, Chen J. Chemical constituents, pharmacologic properties, and clinical applications of Bletilla striata. Front Pharmacol 2019; 10: 1168. doi: 10.3389/fphar.2019.01168 PMID: 31736742
- Chen Z, Cheng L, He Y, Wei X. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int J Biol Macromol 2018; 120(Pt B): 2076-85. doi: 10.1016/j.ijbiomac.2018.09.028 PMID: 30195614
- He X, Wang X, Fang J, et al. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J Ethnopharmacol 2017; 195: 20-38. doi: 10.1016/j.jep.2016.11.026 PMID: 27865796
- Hu Z, Zhao K, Chen X, et al. A berberine-loaded Bletilla striata polysaccharide hydrogel as a new medical dressing for diabetic wound healing. Int J Mol Sci 2023; 24(22): 16286. doi: 10.3390/ijms242216286 PMID: 38003478
- Li H, Wang Y, Yue Y, et al. Rapid identification of Bletilla striata and its counterfeit Polygonatum odoratum decoction pieces based on gas chromatography-ion mobility spectroscopy. Chin Tradit Herb Drugs 2024; 55: 605-13.
- Zhang Q, Qi C, Wang H, et al. Biocompatible and degradable Bletilla striata polysaccharide hemostasis sponges constructed from natural medicinal herb Bletilla striata. Carbohydr Polym 2019; 226: 115304. doi: 10.1016/j.carbpol.2019.115304 PMID: 31582069
- Zhao Y, Wang Q, Yan S, et al. Bletilla striata polysaccharide promotes diabetic wound healing through inhibition of the NLRP3 inflammasome. Front Pharmacol 2021; 12: 659215. doi: 10.3389/fphar.2021.659215 PMID: 33981238
- Yue L, Wang W, Wang Y, et al. Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int J Biol Macromol 2016; 89: 376-88. doi: 10.1016/j.ijbiomac.2016.05.002 PMID: 27151672
- Niu X, Yu J, Huang Q, et al. Immunoenhancement activity of Bletilla striata polysaccharide through MAPK and NF-κB signalling pathways in vivo and in vitro. Autoimmunity 2022; 55(8): 650-60. doi: 10.1080/08916934.2022.2103801 PMID: 35892187
- Chen Z, Zhao Y, Zhang M, et al. Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots. Carbohydr Polym 2020; 227: 115362. doi: 10.1016/j.carbpol.2019.115362 PMID: 31590882
- Liao Z, Zeng R, Hu L, Maffucci KG, Qu Y. Polysaccharides from tubers of Bletilla striata: Physicochemical characterization, formulation of buccoadhesive wafers and preliminary study on treating oral ulcer. Int J Biol Macromol 2019; 122: 1035-45. doi: 10.1016/j.ijbiomac.2018.09.050 PMID: 30227203
- Ren Y, Zhang X, Li T, Zeng Y, Wang J, Huang Q. Galla chinensis, a traditional Chinese medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology and toxicology. J Ethnopharmacol 2021; 278: 114247. doi: 10.1016/j.jep.2021.114247 PMID: 34052353
- Liang Z, Xu Q, Zhang Q, Liu T, Zhang C. Research progress on chemical constituents and pharmacological effects of Galla chinensis. Chin Tradit Herb Drugs 2022; 53: 5908-19.
- Fan S, Xu Y, Qiu F, et al. Bioinformatics‐based and molecular docking study on the mechanism of action of Galla chinensis in the treatment of diabetic foot ulcers. Biotechnol Appl Biochem 2023; 70(1): 387-402. doi: 10.1002/bab.2365 PMID: 35661413
- Li X, Wei S, Niu S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu decoction against sepsis. Comput Biol Med 2022; 144: 105389. doi: 10.1016/j.compbiomed.2022.105389 PMID: 35303581
- Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol 2023; 309: 116306. doi: 10.1016/j.jep.2023.116306 PMID: 36858276
- Yang HY, Liu ML, Luo P, Yao XS, Zhou H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine 2022; 104: 154268. doi: 10.1016/j.phymed.2022.154268 PMID: 35777118
- Sharma B, Yadav DK. Metabolomics and network pharmacology in the exploration of the multi-targeted therapeutic approach of traditional medicinal plants. Plants 2022; 11(23): 3243. doi: 10.3390/plants11233243 PMID: 36501282
- Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 2019; 20(18): 4331. doi: 10.3390/ijms20184331 PMID: 31487867
- Dong Y, Tao B, Xue X, et al. Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology. BMC Complement Med Ther 2021; 21(1): 222. doi: 10.1186/s12906-021-03389-w PMID: 34479552
- Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Fang S, Dong L, Liu L, et al. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 2021; 49(D1): D1197-206. doi: 10.1093/nar/gkaa1063 PMID: 33264402
- Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Res 2023; 51(D1): D1373-80. doi: 10.1093/nar/gkac956 PMID: 36305812
- Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48(D1): D845-55. PMID: 31680165
- Fishilevich S, Zimmerman S, Kohn A, et al. Genic insights from integrated human proteomics in GeneCards. Database (Oxford) 2016; 2016: baw030. doi: 10.1093/database/baw030 PMID: 27048349
- Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98. doi: 10.1093/nar/gku1205 PMID: 25428349
- Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82. doi: 10.1093/nar/gkx1037 PMID: 29126136
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res 2017; 45(D1): D158-69. doi: 10.1093/nar/gkw1099 PMID: 27899622
- Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: An interactive venn diagram viewer. BMC Bioinformatics 2014; 15(1): 293. doi: 10.1186/1471-2105-15-293 PMID: 25176396
- Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51(D1): D638-46. doi: 10.1093/nar/gkac1000 PMID: 36370105
- Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10(1): 1523. doi: 10.1038/s41467-019-09234-6 PMID: 30944313
- The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 2017; 45(D1): D331-8. doi: 10.1093/nar/gkw1108 PMID: 27899567
- Nguyen NT, Nguyen TH, Pham TNH, et al. Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. J Chem Inf Model 2020; 60(1): 204-11. doi: 10.1021/acs.jcim.9b00778 PMID: 31887035
- Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res 2023; 51(D1): D488-508. doi: 10.1093/nar/gkac1077 PMID: 36420884
- Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
- Hou F, Yu Z, Cheng Y, Liu Y, Liang S, Zhang F. Deciphering the pharmacological mechanisms of Scutellaria baicalensis Georgi on oral leukoplakia by combining network pharmacology, molecular docking and experimental evaluations. Phytomedicine 2022; 103: 154195. doi: 10.1016/j.phymed.2022.154195 PMID: 35667260
- Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015; 173(2): 370-8. doi: 10.1111/bjd.13954 PMID: 26175283
- Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements. Cells 2022; 11(15): 2439. doi: 10.3390/cells11152439 PMID: 35954282
- Diao H, Li X, Chen J, et al. Bletilla striata polysaccharide stimulates inducible nitric oxide synthase and proinflammatory cytokine expression in macrophages. J Biosci Bioeng 2008; 105(2): 85-9. doi: 10.1263/jbb.105.85 PMID: 18343332
- Luo Y, Diao H, Xia S, Dong L, Chen J, Zhang J. A physiologically active polysaccharide hydrogel promotes wound healing. J Biomed Mater Res A 2010; 94A(1): 193-204. doi: 10.1002/jbm.a.32711 PMID: 20128009
- Zhang C, Ning D, Pan J, et al. Anti-inflammatory effect fraction of Bletilla striata and its protective effect on LPS-induced acute lung injury. Mediators Inflamm 2021; 2021: 1-16. doi: 10.1155/2021/6684120 PMID: 33776576
- Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018; 7(8): 98. doi: 10.3390/antiox7080098 PMID: 30042332
- Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process. Int Wound J 2017; 14(1): 89-96. doi: 10.1111/iwj.12557 PMID: 26688157
- Zhou D, Chen G, Ma YP, et al. Isolation, structural elucidation, optical resolution, and antineuroinflammatory activity of phenanthrene and 9,10-dihydrophenanthrene derivatives from Bletilla striata. J Nat Prod 2019; 82(8): 2238-45. doi: 10.1021/acs.jnatprod.9b00291 PMID: 31415170
- XunLi , Liu Y , Chu S , et al. Physcion and physcion 8-O-β-glucopyranoside: A review of their pharmacology, toxicities and pharmacokinetics. Chem Biol Interact 2019; 310: 108722. doi: 10.1016/j.cbi.2019.06.035 PMID: 31226286
- Wierzchacz C, Su E, Kolander J, Gebhardt R. Differential inhibition of matrix metalloproteinases-2, -9, and -13 activities by selected anthraquinones. Planta Med 2009; 75(4): 327-9. doi: 10.1055/s-0028-1112205 PMID: 19152226
- Wang H, Xu Z, Zhao M, Liu G, Wu J. Advances of hydrogel dressings in diabetic wounds. Biomater Sci 2021; 9(5): 1530-46. doi: 10.1039/D0BM01747G PMID: 33433534
- Castleberry SA, Almquist BD, Li W, et al. Self‐assembled wound dressings silence MMP‐9 and improve diabetic wound healing in vivo. Adv Mater 2016; 28(9): 1809-17. doi: 10.1002/adma.201503565 PMID: 26695434
- Park HH, Park NY, Kim SG, Jeong KT, Lee EJ, Lee E. Potential wound healing activities of Galla rhois in human fibroblasts and keratinocytes. Am J Chin Med 2015; 43(8): 1625-36. doi: 10.1142/S0192415X15500925 PMID: 26621446
- Chen Y, Tian L, Yang F, et al. Tannic acid accelerates cutaneous wound healing in rats via activation of the ERK 1/2 signaling pathways. Adv Wound Care (New Rochelle) 2019; 8(7): 341-54. doi: 10.1089/wound.2018.0853 PMID: 31737421
- Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother 2022; 154: 113561. doi: 10.1016/j.biopha.2022.113561 PMID: 36029537
- Song X, Chen Y, Chen X, et al. Exosomes from tannic acid-stimulated macrophages accelerate wound healing through miR-221-3p mediated fibroblasts migration by targeting CDKN1b. Int J Biol Macromol 2023; 244: 125088. doi: 10.1016/j.ijbiomac.2023.125088 PMID: 37270133
- Yang D, Moh S, Son D, et al. Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules 2016; 21(7): 899. doi: 10.3390/molecules21070899 PMID: 27399667
- Sklenářová R, Svrčková M, Hodek P, Ulrichová J, Franková J. Effect of the natural flavonoids myricetin and dihydromyricetin on the wound healing process in vitro. J Appl Biomed 2021; 19(3): 149-58. doi: 10.32725/jab.2021.017 PMID: 34907758
- Elshamy AI, Ammar NM, Hassan HA, et al. Topical wound healing activity of myricetin isolated from Tecomaria capensis v. aurea. Molecules 2020; 25(21): 4870. doi: 10.3390/molecules25214870 PMID: 33105570
- Somanath PR, Chen J, Byzova TV. Akt1 is necessary for the vascular maturation and angiogenesis during cutaneous wound healing. Angiogenesis 2008; 11(3): 277-88. doi: 10.1007/s10456-008-9111-7 PMID: 18415691
- Goren I, Müller E, Schiefelbein D, et al. Akt1 controls insulin-driven VEGF biosynthesis from keratinocytes: Implications for normal and diabetes-impaired skin repair in mice. J Invest Dermatol 2009; 129(3): 752-64. doi: 10.1038/jid.2008.230 PMID: 18668138
- Abdalla M, Goc A, Segar L, Somanath PR. Akt1 mediates α-smooth muscle actin expression and myofibroblast differentiation via myocardin and serum response factor. J Biol Chem 2013; 288(46): 33483-93. doi: 10.1074/jbc.M113.504290 PMID: 24106278
- Yaseen HS, Asif M, Saadullah M, et al. Methanolic extract of Ephedra ciliata promotes wound healing and arrests inflammatory cascade in vivo through downregulation of TNF-α. Inflammopharmacology 2020; 28(6): 1691-704. doi: 10.1007/s10787-020-00713-7 PMID: 32385747
- Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules 2021; 11(5): 700. doi: 10.3390/biom11050700 PMID: 34066746
- Sabbah DA, Hajjo R, Sweidan K. Review on Epidermal Growth Factor Receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem 2020; 20(10): 815-34. doi: 10.2174/1568026620666200303123102 PMID: 32124699
- Sgonc R, Gruber J. Age-related aspects of cutaneous wound healing: A mini-review. Gerontology 2013; 59(2): 159-64. doi: 10.1159/000342344 PMID: 23108154
- Nanba D, Toki F, Asakawa K, et al. EGFR-mediated epidermal stem cell motility drives skin regeneration through COL17A1 proteolysis. J Cell Biol 2021; 220(11): e202012073. doi: 10.1083/jcb.202012073 PMID: 34550317
- Catrina SB, Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 2021; 64(4): 709-16. doi: 10.1007/s00125-021-05380-z PMID: 33496820
- Lin CJ, Lan YM, Ou MQ, Ji LQ, Lin SD. Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats. J Endocrinol Invest 2019; 42(11): 1307-17. doi: 10.1007/s40618-019-01053-2 PMID: 31079353
- Duan Z, Wang Y, Lu Z, et al. Wumei Wan attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD: Network pharmacology analysis and experimental evidence. Phytomedicine 2023; 111: 154658. doi: 10.1016/j.phymed.2023.154658 PMID: 36706698
- Pierine DT, Navarro MEL, Minatel IO, et al. Lycopene supplementation reduces TNF-α via RAGE in the kidney of obese rats. Nutr Diabetes 2014; 4(11): e142. doi: 10.1038/nutd.2014.39 PMID: 25383746
- Okamoto T, Yamagishi S, Inagaki Y, et al. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 2002; 16(14): 1928-30. doi: 10.1096/fj.02-0030fje PMID: 12368225
- Wang Q, Zhu G, Cao X, Dong J, Song F, Niu Y. Blocking AGE-RAGE signaling improved functional disorders of macrophages in diabetic wound. J Diabetes Res 2017; 2017: 1-10. doi: 10.1155/2017/1428537 PMID: 29119117
- Liu P, Li Y, Wang W, et al. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022; 153: 113513. doi: 10.1016/j.biopha.2022.113513 PMID: 36076600
- Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009; 1(6): a001651. doi: 10.1101/cshperspect.a001651 PMID: 20457564
- Cai F, Chen W, Zhao R, Liu Y. Mechanisms of Nrf2 and NF-κB pathways in diabetic wound and potential treatment strategies. Mol Biol Rep 2023; 50(6): 5355-67. doi: 10.1007/s11033-023-08392-7 PMID: 37029875
- Hirota S, Beck P, MacDonald J. Targeting hypoxia-inducible factor-1 (HIF-1) signaling in therapeutics: Implications for the treatment of inflammatory bowel disease. Recent Pat Inflamm Allergy Drug Discov 2009; 3(1): 1-16. doi: 10.2174/187221309787158434 PMID: 19149741
- Krizanova O, Penesova A, Sokol J, Hokynkova A, Samadian A, Babula P. Signaling pathways in cutaneous wound healing. Front Physiol 2022; 13: 1030851. doi: 10.3389/fphys.2022.1030851 PMID: 36505088
- Bagheri M, Jahromi BM, Mirkhani H, et al. Azelnidipine, a new calcium channel blocker, promotes skin wound healing in diabetic rats. J Surg Res 2011; 169(1): e101-7. doi: 10.1016/j.jss.2011.02.039 PMID: 21571319
Supplementary files
