CASC19: An Oncogenic Long Non-coding RNA in Different Cancers


Cite item

Full Text

Abstract

A 324 bp lncRNA called CASC19 is found on chromosome 8q24.21. Recent research works have revealed that CASC19 is involved in the prognosis of tumors and related to the regulation of the radiation tolerance mechanisms during tumor radiotherapy (RT). This review sheds light on the changes and roles that CASC19 plays in many tumors and diseases, such as nasopharyngeal carcinoma (NPC), cervical cancer, colorectal cancer (CRC), non-small cell lung cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), gastric cancer (GC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), glioma, and osteoarthritis (OA). CASC19 provides a new strategy for targeted therapy, and the regulatory networks of CASC19 expression levels play a key role in the occurrence and development of tumors and diseases. In addition, the expression level of CASC19 has predictive roles in the prognosis of some tumors and diseases, which has major implications for clinical diagnoses and treatments. CASC19 is also unique in that it is a key gene affecting the efficacy of RT in many tumors, and its expression level plays a decisive role in improving the success rate of treatments. Further research is required to determine the precise process by which CASC19 causes changes in diseased cells in some tumors and diseases.

About the authors

Yinxin Wu

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Jie Mou

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Gang Zhou

College of Traditional Chinese Medicine, China Three Gorges University

Author for correspondence.
Email: info@benthamscience.net

Chengfu Yuan

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018; 172(3): 393-407. doi: 10.1016/j.cell.2018.01.011 PMID: 29373828
  2. Bartonicek N, Maag JLV, Dinger ME. Long noncoding RNAs in cancer: Mechanisms of action and technological advancements. Mol Cancer 2016; 15(1): 43. doi: 10.1186/s12943-016-0530-6 PMID: 27233618
  3. Xiao JN, Yan TH, Yu RM, et al. Long non-coding RNA UCA1 regulates the expression of Snail2 by miR-203 to promote hepatocellular carcinoma progression. J Cancer Res Clin Oncol 2017; 143(6): 981-90. doi: 10.1007/s00432-017-2370-1 PMID: 28271214
  4. Kalmár A, Nagy ZB, Galamb O, et al. Genome-wide expression profiling in colorectal cancer focusing on lncRNAs in the adenoma-carcinoma transition. BMC Cancer 2019; 19(1): 1059. doi: 10.1186/s12885-019-6180-5 PMID: 31694571
  5. Wang Y, Chen W, Lian J, et al. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death Differ 2020; 27(2): 695-710. doi: 10.1038/s41418-019-0381-y PMID: 31320749
  6. Wang XD, Lu J, Lin YS, Gao C, Qi F. Functional role of long non-coding RNA CASC19/miR-140-5p/CEMIP axis in colorectal cancer progression in vitro. World J Gastroenterol 2019; 25(14): 1697-714. doi: 10.3748/wjg.v25.i14.1697 PMID: 31011255
  7. Liu H, Zheng W, Chen Q, et al. lncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway. Int J Mol Sci 2021; 22(3): 1407. doi: 10.3390/ijms22031407 PMID: 33573349
  8. Kim T, Cui R, Jeon YJ, et al. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci 2014; 111(11): 4173-8. doi: 10.1073/pnas.1400350111 PMID: 24594601
  9. Sun Q, Liu T, Yuan Y, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer 2015; 136(5): 1003-12. doi: 10.1002/ijc.29065 PMID: 25044403
  10. Chen C, Wang K, Wang Q, Wang X. LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells. Braz J Med Biol Res 2018; 51(6): e7080.
  11. Zhang Y, Fan Y, Huang S, et al. Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway. Cancer Sci 2018; 109(12): 3865-73. doi: 10.1111/cas.13808 PMID: 30259603
  12. Chen H, Ji Y, Yan X, Su G, Chen L, Xiao J. Berberine attenuates apoptosis in rat retinal Müller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling. Biomed Pharma 2018; 108: 1201-7.
  13. Diamantopoulos PT, Sofotasiou M, Papadopoulou V, Polonyfi K, Iliakis T, Viniou NA. PARP1-driven apoptosis in chronic lymphocytic leukemia. BioMed Res Int 2014; 2014: 1-6. doi: 10.1155/2014/106713 PMID: 25161998
  14. Hähle A, Merz S, Meyners C, Hausch F. The many faces of FKBP51. Biomolecules 2019; 9(1): 35. doi: 10.3390/biom9010035 PMID: 30669684
  15. Liu H, Chen Q, Zheng W, et al. LncRNA CASC19 enhances the radioresistance of nasopharyngeal carcinoma by regulating the miR-340-3p/FKBP5 Axis. Int J Mol Sci 2023; 24(3): 3047. doi: 10.3390/ijms24033047
  16. Johnson CA, James D, Marzan A, Armaos M. Cervical cancer: An overview of pathophysiology and management. Semin Oncol Nurs 2019; 35(2): 166-74. doi: 10.1016/j.soncn.2019.02.003 PMID: 30878194
  17. Olusola P, Banerjee HN, Philley JV, Dasgupta S. Human papilloma virus-associated cervical cancer and health disparities. Cells 2019; 8(6): 622. doi: 10.3390/cells8060622 PMID: 31234354
  18. Nagelkerke A, Span PN. Staining against phospho-H2AX (γ-H2AX) as a marker for DNA damage and genomic instability in cancer tissues and cells. Adv Exp Med Biol 2016; 899: 1-10. doi: 10.1007/978-3-319-26666-4_1 PMID: 27325258
  19. Liu YJ, Guo RX, Han LP, Gu H, Liu MZ. Effect of CASC19 on proliferation, apoptosis and radiation sensitivity of cervical cancer cells by regulating miR-449b-5p expression. Zhonghua Fu Chan Ke Za Zhi 2020; 55(1): 36-44. PMID: 32074771
  20. Gallagher DJ, Kemeny N. Metastatic colorectal cancer: From improved survival to potential cure. Oncology 2010; 78(3-4): 237-48. doi: 10.1159/000315730 PMID: 20523084
  21. Wu YJ, Yang QS, Chen H, Wang JT, Wang WB, Zhou L. Long non-coding RNA CASC19 promotes glioma progression by modulating the miR-454-3p/RAB5A axis and is associated with unfavorable MRI features. Oncol Rep 2020; 45(2): 728-37. doi: 10.3892/or.2020.7876 PMID: 33416169
  22. Terashima M, Fujita Y, Togashi Y, et al. KIAA1199 interacts with glycogen phosphorylase kinase β-subunit (PHKB) to promote glycogen breakdown and cancer cell survival. Oncotarget 2014; 5(16): 7040-50. doi: 10.18632/oncotarget.2220 PMID: 25051373
  23. Pelletier J, Bellot G, Gounon P, Lacas-Gervais S, Pouysségur J, Mazure NM. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Front Oncol 2012; 2: 18. doi: 10.3389/fonc.2012.00018 PMID: 22649778
  24. Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hematol 2021; 157: 103194. doi: 10.1016/j.critrevonc.2020.103194 PMID: 33316418
  25. Ko EC, Raben D, Formenti SC. The integration of radiotherapy with immunotherapy for the treatment of non–small cell lung cancer. Clin Cancer Res 2018; 24(23): 5792-806. doi: 10.1158/1078-0432.CCR-17-3620 PMID: 29945993
  26. Zhao X, Yuan C, He X, et al. Identification and in vitro validation of diagnostic and prognostic biomarkers for lung squamous cell carcinoma. J Thorac Dis 2022; 14(4): 1243-55. doi: 10.21037/jtd-22-343 PMID: 35572889
  27. Song J, Zhang S, Sun Y, et al. A radioresponse-related lncrna biomarker signature for risk classification and prognosis prediction in non-small-cell lung cancer. J Oncol 2021; 2021: 1-16. doi: 10.1155/2021/4338838 PMID: 34594376
  28. Li D, Li H, Yang Y, Kang L. Long noncoding RNA urothelial carcinoma-associated 1 promotes the proliferation and metastasis of human lung tumor cells by regulating MicroRNA-144. Oncol Res 2018; 26(4): 537-46. doi: 10.3727/096504017X15009792179602 PMID: 28762326
  29. Wang L, Lin C, Sun N, Wang Q, Ding X, Sun Y. Long non-coding RNA CASC19 facilitates non-small cell lung cancer cell proliferation and metastasis by targeting the miR-301b-3p/LDLR axis. J Gene Med 2020; 22(12): e3254. doi: 10.1002/jgm.3254 PMID: 32677267
  30. Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol 2010; 7(5): 245-57. doi: 10.1038/nrurol.2010.46 PMID: 20448658
  31. Wolf MM, Rathmell KW, Beckermann KE. Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene 2020; 39(17): 3413-26. doi: 10.1038/s41388-020-1234-3 PMID: 32123314
  32. Luo Y, Liu F, Yan C, et al. Long Non-Coding RNA CASC19 sponges microRNA-532 and promotes oncogenicity of clear cell renal cell carcinoma by increasing ets1 expression. Cancer Manag Res 2020; 12: 2195-207. doi: 10.2147/CMAR.S242472 PMID: 32273759
  33. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
  34. Xu F, Ji S, Yang L, Li Y, Shen P. Potential upstream lncRNA-miRNA-mRNA regulatory network of the ferroptosis-related gene SLC7A11 in renal cell carcinoma. Transl Androl Urol 2023; 12(1): 33-57. doi: 10.21037/tau-22-663 PMID: 36760866
  35. Correa P. Gastric cancer. Gastroenterol Clin North Am 2013; 42(2): 211-7. doi: 10.1016/j.gtc.2013.01.002 PMID: 23639637
  36. Ang TL, Fock KM. Clinical epidemiology of gastric cancer. Singapore Med J 2014; 55(12): 621-8. doi: 10.11622/smedj.2014174 PMID: 25630323
  37. Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol 2017; 39(7) doi: 10.1177/1010428317714626 PMID: 28671042
  38. Wang WJ, Guo CA, Li R, et al. Long non-coding RNA CASC19 is associated with the progression and prognosis of advanced gastric cancer. Aging (Albany NY) 2019; 11(15): 5829-47. doi: 10.18632/aging.102190 PMID: 31422382
  39. Swatek KN, Komander D. Ubiquitin modifications. Cell Res 2016; 26(4): 399-422. doi: 10.1038/cr.2016.39 PMID: 27012465
  40. Wang S, Qiao C, Li J, Liu S, Li P. LncRNA CASC19 promotes gastric cancer progression through preventing CREB1 protein ubiquitin/proteasome-dependent degradation. Carcinogenesis 2023; 44(3): 209-20. doi: 10.1093/carcin/bgad001 PMID: 36651836
  41. Huang B, Liu J, Lu J, et al. Aerial view of the association between m6A-related LncRNAs and clinicopathological characteristics of pancreatic cancer. Front Oncol 2022; 11: 812785. doi: 10.3389/fonc.2021.812785 PMID: 35047414
  42. Lu T, Wei GH, Wang J, Shen J. LncRNA CASC19 contributed to the progression of pancreatic cancer through modulating miR-148b/E2F7 axis. Eur Rev Med Pharmacol Sci 2020; 24(20): 10462-71. PMID: 33155202
  43. Li F, He C, Yao H, et al. GLUT1 regulates the tumor immune microenvironment and promotes tumor metastasis in pancreatic adenocarcinoma via NCRNA-mediated network. J Cancer 2022; 13(8): 2540-58. doi: 10.7150/jca.72161 PMID: 35711842
  44. Liu JKH, Irvine AF, Jones RL, Samson A. Immunotherapies for hepatocellular carcinoma. Cancer Med 2022; 11(3): 571-91. doi: 10.1002/cam4.4468 PMID: 34953051
  45. Cheng H, Sun G, Chen H, et al. Trends in the treatment of advanced hepatocellular carcinoma: Immune checkpoint blockade immunotherapy and related combination therapies. Am J Cancer Res 2019; 9(8): 1536-45. PMID: 31497341
  46. Xu Q, Wang Y, Huang W. Identification of immune-related lncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. Int Immunopharmacol 2021; 92: 107333. doi: 10.1016/j.intimp.2020.107333 PMID: 33486322
  47. Luo T, Chen M, Zhao Y, et al. Macrophage-associated lncRNA ELMO1-AS1: A novel therapeutic target and prognostic biomarker for hepatocellular carcinoma. OncoTargets Ther 2019; 12: 6203-16. doi: 10.2147/OTT.S213833 PMID: 31498334
  48. Hou Y, Tang Y, Ma C, Yu J, Jia Y. Overexpression of CASC19 contributes to tumor progression and predicts poor prognosis after radical resection in hepatocellular carcinoma. Digestive Liver Dis 2023; 55(6): 799-806.
  49. Wirsching HG, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol 2016; 134: 381-97. doi: 10.1016/B978-0-12-802997-8.00023-2 PMID: 26948367
  50. Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett 2020; 476: 1-12. doi: 10.1016/j.canlet.2020.02.002 PMID: 32044356
  51. Tom MC, Park DYJ, Yang K, et al. Malignant transformation of molecularly classified adult low-grade glioma. Int J Radiat Oncol Biol Phys 2019; 105(5): 1106-12. doi: 10.1016/j.ijrobp.2019.08.025 PMID: 31461674
  52. Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis. JAMA 2021; 325(6): 568-78. doi: 10.1001/jama.2020.22171 PMID: 33560326
  53. Pereira D, Ramos E, Branco J. Osteoarthritis. Acta Med Port 2014; 28(1): 99-106. doi: 10.20344/amp.5477 PMID: 25817486
  54. Zhou C, He T, Chen L. LncRNA CASC19 accelerates chondrocytes apoptosis and proinflammatory cytokine production to exacerbate osteoarthritis development through regulating the miR-152-3p/DDX6 axis. J Orthop Surg Res 2021; 16(1): 399. doi: 10.1186/s13018-021-02543-x PMID: 34158095

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers