Innovative Strategies to Enhance mRNA Vaccine Delivery and Effectiveness: Mechanisms and Future Outlook


Cite item

Full Text

Abstract

The creation of mRNA vaccines has transformed the area of vaccination and allowed for the production of COVID-19 vaccines with previously unheard-of speed and effectiveness. The development of novel strategies to enhance the delivery and efficiency of mRNA vaccines has been motivated by the ongoing constraints of the present mRNA vaccine delivery systems. In this context, intriguing methods to get beyond these restrictions include lipid nanoparticles, self-amplifying RNA, electroporation, microneedles, and cell-targeted administration. These innovative methods could increase the effectiveness, safety, and use of mRNA vaccines, making them more efficient, effective, and broadly available. Additionally, mRNA technology may have numerous and far-reaching uses in the field of medicine, opening up fresh avenues for the diagnosis and treatment of disease. This paper gives an overview of the existing drawbacks of mRNA vaccine delivery techniques, the creative solutions created to address these drawbacks, and their prospective public health implications. The development of mRNA vaccines for illnesses other than infectious diseases and creating scalable and affordable manufacturing processes are some of the future directions for research in this area that are covered in this paper.

About the authors

Abhishek Verma

Department of Pharmaceutics,, ISF College of Pharmacy

Email: info@benthamscience.net

Ankit Awasthi

Department of Pharmaceutics, ISF College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kim SC, Sekhon SS, Shin WR, et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol 2022; 18(1): 1-8. doi: 10.1007/s13273-021-00171-4 PMID: 34567201
  2. Machado BAS, Hodel KVS, Fonseca LMS, et al. The importance of RNA-based vaccines in the fight against COVID-19: An overview. Vaccines 2021; 9(11): 1345. doi: 10.3390/vaccines9111345 PMID: 34835276
  3. Knezevic I, Liu MA, Peden K, Zhou T, Kang HN. Development of mRNA vaccines: Scientific and regulatory issues. Vaccines 2021; 9(2): 81. doi: 10.3390/vaccines9020081 PMID: 33498787
  4. Liang Y, Huang L, Liu T. Development and delivery systems of mRNA vaccines. Front Bioeng Biotechnol 2021; 9: 718753. doi: 10.3389/fbioe.2021.718753 PMID: 34386486
  5. To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov 2021; 16(11): 1307-17. doi: 10.1080/17460441.2021.1935859 PMID: 34058918
  6. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - A new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79. doi: 10.1038/nrd.2017.243 PMID: 29326426
  7. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer 2021; 20(1): 41. doi: 10.1186/s12943-021-01335-5 PMID: 33632261
  8. Dolgin E. The tangled history of mRNA vaccines. Nature 2021; 597(7876): 318-24. doi: 10.1038/d41586-021-02483-w PMID: 34522017
  9. Chilamakuri R, Agarwal S. COVID-19: Characteristics and therapeutics. Cells 2021; 10(2): 206. doi: 10.3390/cells10020206 PMID: 33494237
  10. Park JW, Lagniton PNP, Liu Y, Xu RH. mRNA vaccines for COVID-19: What, why and how. Int J Biol Sci 2021; 17(6): 1446-60. doi: 10.7150/ijbs.59233 PMID: 33907508
  11. Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol 2020; 65: 14-20. doi: 10.1016/j.coi.2020.01.008 PMID: 32244193
  12. Aldosari BN, Alfagih IM, Almurshedi AS. Lipid nanoparticles as delivery systems for RNA-based vaccines. Pharmaceutics 2021; 13(2): 206. doi: 10.3390/pharmaceutics13020206 PMID: 33540942
  13. Al Fayez N, Nassar MS, Alshehri AA, et al. Recent advancement in mRNA vaccine development and applications. Pharmaceutics 2023; 15(7): 1972. doi: 10.3390/pharmaceutics15071972 PMID: 37514158
  14. Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022; 188: 114416. doi: 10.1016/j.addr.2022.114416 PMID: 35787388
  15. Qaid TS, Mazaar H, Alqahtani MS, Raweh AA, Alakwaa W. Deep sequence modelling for predicting COVID-19 mRNA vaccine degradation. PeerJ Comput Sci 2021; 7: e597. doi: 10.7717/peerj-cs.597 PMID: 34239977
  16. Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: A potential therapeutic strategy. Mol Cancer 2021; 20(1): 33. doi: 10.1186/s12943-021-01311-z PMID: 33593376
  17. Kon E, Elia U, Peer D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr Opin Biotechnol 2022; 73: 329-36. doi: 10.1016/j.copbio.2021.09.016 PMID: 34715546
  18. Chen S, Huang X, Xue Y, et al. Nanotechnology-based mRNA vaccines. Nat Rev Methods Primers 2023; 3(1): 63. doi: 10.1038/s43586-023-00246-7
  19. Li M, Zhao M, Fu Y, et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J Control Release 2016; 228: 9-19. doi: 10.1016/j.jconrel.2016.02.043 PMID: 26941035
  20. Ahmed R, Sayegh N, Graciotti M, Kandalaft LE. Electroporation as a method of choice to generate genetically modified dendritic cell cancer vaccines. Curr Opin Biotechnol 2020; 65: 142-55. doi: 10.1016/j.copbio.2020.02.009 PMID: 32240923
  21. Wang EY, Sarmadi M, Ying B, Jaklenec A, Langer R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 2023; 303: 122345. doi: 10.1016/j.biomaterials.2023.122345 PMID: 37918182
  22. Yokoo H, Oba M, Uchida S. Cell-penetrating peptides: Emerging tools for mRNA delivery. Pharmaceutics 2021; 14(1): 78. doi: 10.3390/pharmaceutics14010078 PMID: 35056974
  23. Peletta A, Prompetchara E, Tharakhet K, et al. DNA vaccine administered by cationic lipoplexes or by in vivo electroporation induces comparable antibody responses against SARS-CoV-2 in mice. Vaccines 2021; 9(8): 874. doi: 10.3390/vaccines9080874 PMID: 34451998
  24. Xue L, Thatte AS, Mai D, et al. Responsive biomaterials: Optimizing control of cancer immunotherapy. Nat Rev Mater 2023; 9(2): 100-18. doi: 10.1038/s41578-023-00617-2
  25. Ramachandran S, Satapathy SR, Dutta T. Delivery strategies for mRNA vaccines. Pharmaceut Med 2022; 36(1): 11-20. doi: 10.1007/s40290-021-00417-5 PMID: 35094366
  26. Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023; 15(5): e1894. doi: 10.1002/wnan.1894 PMID: 37096256
  27. Midoux P, Pichon C. Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines 2015; 14(2): 221-34. doi: 10.1586/14760584.2015.986104 PMID: 25540984
  28. Oude Blenke E, Örnskov E, Schöneich C, et al. The storage and in-use stability of mRNA vaccines and therapeutics: Not a cold case. J Pharm Sci 2023; 112(2): 386-403. doi: 10.1016/j.xphs.2022.11.001 PMID: 36351479
  29. Kim Y-A, Mousavi K, Yazdi A, et al. Computational design of mRNA vaccines. Vaccine 2023; S0264-410X(23)00836-8. PMID: 37479613
  30. Lee J, Woodruff MC, Kim EH, Nam JH. Knife’s edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med 2023; 55(7): 1305-13. doi: 10.1038/s12276-023-00999-x PMID: 37430088
  31. Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med 2023; 55(10): 2085-96. doi: 10.1038/s12276-023-01086-x PMID: 37779140
  32. Jackson NA, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: A biotech and industrial perspective. npj. Vaccines 2020; 5(1): 11. PMID: 33375677
  33. Sapkota B, Saud B, Shrestha R, et al. Heterologous prime-boost strategies for COVID-19 vaccines. J Travel Med 2022; 29(3): taab191. PMID: 34918097
  34. Goel RR, Painter MM, Apostolidis SA, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021; 374(6572): abm0829. doi: 10.1126/science.abm0829 PMID: 34648302
  35. Huang X, Zhang G, Tang TY, Gao X, Liang TB. Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine. Mil Med Res 2022; 9(1): 53. doi: 10.1186/s40779-022-00416-w PMID: 36224645
  36. Kowalzik F, Schreiner D, Jensen C, Teschner D, Gehring S, Zepp F. mRNA-based vaccines. Vaccines 2021; 9(4): 390. doi: 10.3390/vaccines9040390 PMID: 33921028
  37. Aga AM, Kelel M, Gemeda MT. Recent advances in mRNA vaccine development. Preprints 2023. doi: 10.20944/preprints202308.0245.v1
  38. Duan LJ, Wang Q, Zhang C, Yang DX, Zhang XY. Potentialities and challenges of mRNA vaccine in cancer immunotherapy. Front Immunol 2022; 13: 923647. doi: 10.3389/fimmu.2022.923647 PMID: 35711457
  39. Blakney AK, McKay PF, Hu K, et al. Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J Control Release 2021; 338: 201-10. doi: 10.1016/j.jconrel.2021.08.029 PMID: 34418521
  40. Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development. Vaccines 2021; 9(2): 97. doi: 10.3390/vaccines9020097 PMID: 33525396
  41. Schmidt C, Schnierle BS. Self-amplifying RNA vaccine candidates: Alternative platforms for mRNA vaccine development. Pathogens 2023; 12(1): 138. doi: 10.3390/pathogens12010138 PMID: 36678486
  42. Ballesteros-Briones MC, Silva-Pilipich N, Herrador-Cañete G, Vanrell L, Smerdou C. A new generation of vaccines based on alphavirus self-amplifying RNA. Curr Opin Virol 2020; 44: 145-53. doi: 10.1016/j.coviro.2020.08.003 PMID: 32898764
  43. Bathula NV, Popova P, Blakney A. Delivery vehicles for self-amplifying RNA messenger RNA therapeutics. Springer 2022; pp. 355-70. doi: 10.1007/978-3-031-08415-7_16
  44. Liu Y, Li Y, Hu Q. Advances in saRNA vaccine research against emerging/re-emerging viruses. Vaccines 2023; 11(7): 1142. doi: 10.3390/vaccines11071142 PMID: 37514957
  45. Su Q, Lv X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics 2020; 112(2): 1680-5. doi: 10.1016/j.ygeno.2019.10.006 PMID: 31626900
  46. Holmqvist E, Berggren S, Rizvanovic A. RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. Biochim Biophys Acta Gene Regul Mech 2020; 1863(9): 194596. doi: 10.1016/j.bbagrm.2020.194596 PMID: 32565402
  47. Legen J, Dühnen S, Gauert A, Götz M, Schmitz-Linneweber C. A CRR2-dependent sRNA sequence supports papillomavirus vaccine expression in tobacco chloroplasts. Metabolites 2023; 13(3): 315. doi: 10.3390/metabo13030315 PMID: 36984756
  48. Qin S, Tang X, Chen Y, et al. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7(1): 166. doi: 10.1038/s41392-022-01007-w PMID: 35597779
  49. Guidi C, De Wannemaeker L, De Baets J, et al. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli. Microb Cell Fact 2022; 21(1): 260. doi: 10.1186/s12934-022-01983-2 PMID: 36522655
  50. Yin C, Zhu H, Jiang Y, Shan Y, Gong L. Silencing dicer-like genes reduces virulence and sRNA generation in Penicillium italicum, the cause of citrus blue mold. Cells 2020; 9(2): 363. doi: 10.3390/cells9020363 PMID: 32033176
  51. Li M, Li Y, Li S, et al. The nano delivery systems and applications of mRNA. Eur J Med Chem 2022; 227: 113910. doi: 10.1016/j.ejmech.2021.113910 PMID: 34689071
  52. Bowman EK, Mihailovic MK, Li B, Contreras LM. Bioinformatic application of fluorescence-based in vivo RNA regional accessibility data to identify novel sRNA targets. RNA Spectrosc: Methods Protoc 2020; 41-71. doi: 10.1007/978-1-0716-0278-2_5
  53. Šečić E, Kogel KH. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies. Curr Opin Biotechnol 2021; 70: 136-42. doi: 10.1016/j.copbio.2021.04.001 PMID: 34000482
  54. Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles-from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11): 16982-7015. doi: 10.1021/acsnano.1c04996 PMID: 34181394
  55. Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 2016; 7(5): 319-34. doi: 10.4155/tde-2016-0006 PMID: 27075952
  56. Hassett KJ, Higgins J, Woods A, et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J Control Release 2021; 335: 237-46. doi: 10.1016/j.jconrel.2021.05.021 PMID: 34019945
  57. Swetha K, Kotla NG, Tunki L, et al. Recent advances in the lipid nanoparticle-mediated delivery of mRNA vaccines. Vaccines 2023; 11(3): 658. doi: 10.3390/vaccines11030658 PMID: 36992242
  58. Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023; 65: 108130. doi: 10.1016/j.biotechadv.2023.108130 PMID: 36933868
  59. Khan MS, Baskoy SA, Yang C, et al. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. Nanoscale Adv 2023; 5(7): 1853-69. doi: 10.1039/D2NA00795A PMID: 36998671
  60. Lambricht L, Lopes A, Kos S, Sersa G, Préat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv 2016; 13(2): 295-310. doi: 10.1517/17425247.2016.1121990 PMID: 26578324
  61. Cu Y, Broderick K, Banerjee K, et al. Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation in situ. Vaccines 2013; 1(3): 367-83. doi: 10.3390/vaccines1030367 PMID: 26344119
  62. Brito LA, Kommareddy S, Maione D, et al. Self-amplifying mRNA vaccines. Adv Genet 2015; 89: 179-233. doi: 10.1016/bs.adgen.2014.10.005 PMID: 25620012
  63. Bolhassani A, Khavari A, Orafa Z. Electroporation-advantages and drawbacks for delivery of drug, gene and vaccine. Application of nanotechnology in drug delivery 2014; 369-77. doi: 10.5772/58376
  64. Broderick KE, Humeau LM. Enhanced delivery of DNA or RNA vaccines by electroporation. RNA Vaccines: Methods and Protocols 2017; 193-200. doi: 10.1007/978-1-4939-6481-9_12
  65. Menon I, Bagwe P, Gomes KB, et al. Microneedles: A new generation vaccine delivery system. Micromachines 2021; 12(4): 435. doi: 10.3390/mi12040435 PMID: 33919925
  66. Mansoor I, Eassa HA, Mohammed KHA, et al. Microneedle-based vaccine delivery: Review of an emerging technology. AAPS PharmSciTech 2022; 23(4): 103. doi: 10.1208/s12249-022-02250-8 PMID: 35381906
  67. Ma G, Gu Z, Wei W. Advanced vaccine delivery. Adv Drug Deliv Rev 2022; 183: 114170. doi: 10.1016/j.addr.2022.114170 PMID: 35217115
  68. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64(14): 1547-68. doi: 10.1016/j.addr.2012.04.005 PMID: 22575858
  69. Kuwentrai C. Development of microneedle-based vaccine delivery systems and mRNA-based vaccines. HKU Theses Online 2023.
  70. Subramanya S, Armant M, Salkowitz JR, et al. Enhanced induction of HIV-specific cytotoxic T lymphocytes by dendritic cell-targeted delivery of SOCS-1 siRNA. Mol Ther 2010; 18(11): 2028-37. doi: 10.1038/mt.2010.148 PMID: 20648001
  71. Li X, Wei Z, Xue C. Oral cell-targeted delivery systems constructed of edible materials: Advantages and challenges. Molecules 2022; 27(22): 7991. doi: 10.3390/molecules27227991 PMID: 36432092
  72. Zhang C, Wang GX, Zhu B. Application of antigen presenting cell-targeted nanovaccine delivery system in rhabdovirus disease prophylactics using fish as a model organism. J Nanobiotechnol 2020; 18(1): 24. doi: 10.1186/s12951-020-0584-x PMID: 32000788
  73. Zhang Y, Li M, Du G, Chen X, Sun X. Advanced oral vaccine delivery strategies for improving the immunity. Adv Drug Deliv Rev 2021; 177: 113928. doi: 10.1016/j.addr.2021.113928 PMID: 34411689
  74. Farris E, Brown DM, Ramer-Tait AE, Pannier AK. Micro- and nanoparticulates for DNA vaccine delivery. Exp Biol Med 2016; 241(9): 919-29. doi: 10.1177/1535370216643771 PMID: 27048557
  75. Khurana A, Allawadhi P, Khurana I, et al. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021; 38: 101142. doi: 10.1016/j.nantod.2021.101142 PMID: 33815564
  76. Chen G, Zhao B, Ruiz EF, Zhang F. Advances in the polymeric delivery of nucleic acid vaccines. Theranostics 2022; 12(9): 4081-109. doi: 10.7150/thno.70853 PMID: 35673570
  77. Ho W, Gao M, Li F, Li Z, Zhang XQ, Xu X. Next-generation vaccines: Nanoparticle-mediated dna and mrna delivery. Adv Healthc Mater 2021; 10(8): 2001812. doi: 10.1002/adhm.202001812 PMID: 33458958
  78. Ledesma-Feliciano C, Chapman R, Hooper JW, et al. Improved DNA vaccine delivery with needle-free injection systems. Vaccines 2023; 11(2): 280. doi: 10.3390/vaccines11020280 PMID: 36851159
  79. Soto ER, Specht CA, Lee CK, Levitz SM, Ostroff GR. One step purification-vaccine delivery system. Pharmaceutics 2023; 15(5): 1390. doi: 10.3390/pharmaceutics15051390 PMID: 37242632
  80. Huang P, Jiang L, Pan H, et al. An integrated polymeric mRNA vaccine without inflammation side effects for cellular immunity mediated cancer therapy. Adv Mater 2023; 35(3): 2207471. doi: 10.1002/adma.202207471 PMID: 36326183
  81. Huang X, Kong N, Zhang X, Cao Y, Langer R, Tao W. The landscape of mRNA nanomedicine. Nat Med 2022; 28(11): 2273-87. doi: 10.1038/s41591-022-02061-1 PMID: 36357682
  82. Guevara ML, Persano S, Persano F. Lipid-based vectors for therapeutic mRNA-based anti-cancer vaccines. Curr Pharm Des 2019; 25(13): 1443-54. doi: 10.2174/1381612825666190619150221 PMID: 31258071
  83. Song M, Liu C, Chen S, Zhang W. Nanocarrier-based drug delivery for melanoma therapeutics. Int J Mol Sci 2021; 22(4): 1873. doi: 10.3390/ijms22041873 PMID: 33668591
  84. Antimisiaris SG, Marazioti A, Kannavou M, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021; 174: 53-86. doi: 10.1016/j.addr.2021.01.019 PMID: 33539852
  85. Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles- from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11): 16982-7015. doi: 10.1021/acsnano.1c04996 PMID: 34181394
  86. Tomé I, Francisco V, Fernandes H, Ferreira L. High-throughput screening of nanoparticles in drug delivery. APL Bioeng 2021; 5(3): 031511. doi: 10.1063/5.0057204 PMID: 34476328
  87. Fan Y, Moon J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines 2015; 3(3): 662-85. doi: 10.3390/vaccines3030662 PMID: 26350600
  88. Linares-Fernández S, Lacroix C, Exposito JY, Verrier B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med 2020; 26(3): 311-23. doi: 10.1016/j.molmed.2019.10.002 PMID: 31699497
  89. Duong VA, Nguyen TTL, Maeng HJ. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery. Pharmaceutics 2023; 15(1): 207. doi: 10.3390/pharmaceutics15010207 PMID: 36678838
  90. Nahar UJ, Toth I, Skwarczynski M. Mannose in vaccine delivery. J Control Release 2022; 351: 284-300. doi: 10.1016/j.jconrel.2022.09.038 PMID: 36150579
  91. Fan X, Wang K, Lu Q, Lu Y, Sun J. Cell-based drug delivery systems participate in the cancer immunity cycle for improved cancer immunotherapy. Small 2023; 19(4): 2205166. doi: 10.1002/smll.202205166 PMID: 36437050
  92. Malek-Khatabi A, Tabandeh Z, Nouri A, et al. Long-term vaccine delivery and immunological responses using biodegradable polymer-based carriers. ACS Appl Bio Mater 2022; 5(11): 5015-40. doi: 10.1021/acsabm.2c00638 PMID: 36214209

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers