The Application of Nanotechnological Therapeutic Platforms against Gynecological Cancers


Cite item

Full Text

Abstract

Gynecological cancers (GCs), ovarian, cervical, and endometrial/uterine cancers, are often associated with poor outcomes. Despite the development of several therapeutic modalities against GCs, the effectiveness of the current therapeutic approaches is limited due to their side effects, low therapeutic index, short halflife, and resistance to therapy. To overcome these limitations, nano delivery-based approaches have been introduced with the potential of targeted delivery, reduced toxicity, controlled release, and improved bioavailability of various cargos. This review summarizes the application of different nanoplatforms, such as lipid-based, metal-based, and polymeric nanoparticles, to improve the chemo/radio treatments of GC. In the following work, the use of nanoformulated agents to fight GCs has been mentioned in various clinical trials. Although nanosystems have their own challenges, the knowledge highlighted in this article could provide deep insight into translations of NPs approaches to overcome GCs.

About the authors

Vahideh Keyvani

Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences,

Email: info@benthamscience.net

Samaneh Mollazadeh

Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences

Email: info@benthamscience.net

Espanta Riahi

Academic Center for Education, Culture and Research (ACECR), Blood Borne Infections Research Center

Email: info@benthamscience.net

Reihaneh Mahmoudian

Metabolic Syndrome Research Center, Mashhad University of Medical Science

Email: info@benthamscience.net

Masoomeh Tabari

Medical Genetics Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Elmira Lagzian

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Elnaz Ghorbani

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Hamed Akbarzade

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amir-Sadra Gholami

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Ibrahim Saeed Gataa

College of Medicine, University of Warith Al-Anbiyaa

Email: info@benthamscience.net

Seyed Mahdi Hassanian

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Gordon Ferns

Division of Medical Education, Brighton & Sussex Medical School

Email: info@benthamscience.net

Majid Khazaei

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amir Avan

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Kazem Anvari

Cancer Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Keyvani V, Kheradmand N, Navaei ZN, Mollazadeh S, Esmaeili SA. Epidemiological trends and risk factors of gynecological cancers: An update. Med Oncol 2023; 40(3): 93. doi: 10.1007/s12032-023-01957-3 PMID: 36757546
  2. Keyvani V, Riahi E, Yousefi M, et al. Gynecologic cancer, cancer stem cells, and possible targeted therapies. Front Pharmacol 2022; 13: 823572. doi: 10.3389/fphar.2022.823572 PMID: 35250573
  3. Piechocki M, Koziołek W, Sroka D, et al. Trends in incidence and mortality of gynecological and breast cancers in Poland (1980-2018). Clin Epidemiol 2022; 14: 95-114. doi: 10.2147/CLEP.S330081 PMID: 35115839
  4. Gultekin M, Dundar S, Kucukyildiz I, et al. Survival of gynecological cancers in Turkey: Where are we at? J Gynecol Oncol 2017; 28(6): e85. doi: 10.3802/jgo.2017.28.e85 PMID: 29027403
  5. Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5(1): 137. doi: 10.1038/s41392-020-0199-6 PMID: 32728057
  6. Bejar FG, Oaknin A, Williamson C, et al. Novel therapies in gynecologic cancer. Am Soc Clin Oncol Educ Book 2022; 42: 1-17. PMID: 35594502
  7. Zheng F, Xiong W, Sun S, Zhang P, Zhu JJ. Recent advances in drug release monitoring. Nanophotonics 2019; 8(3): 391-413. doi: 10.1515/nanoph-2018-0219
  8. Wang T, Jiang K, Wang Y, et al. Prolonged near-infrared fluorescence imaging of microRNAs and proteases in vivo by aggregation-enhanced emission from DNA-AuNC nanomachines. Chem Sci 2024; 15(5): 1829-39. doi: 10.1039/D3SC05887E PMID: 38303939
  9. Malik A, Tahir Butt T, Zahid S, et al. Use of magnetic nanoparticles as targeted therapy: Theranostic approach to treat and diagnose cancer. J Nanotechnol 2017; 2017: 1-8. doi: 10.1155/2017/1098765
  10. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Med Appl 2020; pp. 61-91. doi: 10.1201/9780429399039-2
  11. Liu S, Cheng Q, Wei T, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR- Cas gene editing. Nat Mater 2021; 20(5): 701-10. doi: 10.1038/s41563-020-00886-0 PMID: 33542471
  12. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev 2015; 115(19): 11147-90. doi: 10.1021/acs.chemrev.5b00116 PMID: 26088284
  13. Yang T, Zhai J, Hu D, et al. "Targeting design" of nanoparticles in tumor therapy. Pharmaceutics 2022; 14(9): 1919. doi: 10.3390/pharmaceutics14091919 PMID: 36145668
  14. Dutta B, Nema A, Shetake NG, et al. Glutamic acid-coated Fe3O4 nanoparticles for tumor-targeted imaging and therapeutics. Mater Sci Eng C 2020; 112: 110915. doi: 10.1016/j.msec.2020.110915 PMID: 32409067
  15. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol 2021; 14(1): 85. doi: 10.1186/s13045-021-01096-0 PMID: 34059100
  16. Mare R, Paolino D, Celia C, Molinaro R, Fresta M, Cosco D. Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes. Int J Pharm 2018; 552(1-2): 414-21. doi: 10.1016/j.ijpharm.2018.10.028 PMID: 30316001
  17. Qi Z, Yin L, Xu Y, Wang F. Pegylated liposomal-paclitaxel induces ovarian cancer cell apoptosis via TNF-induced ERK/AKT signaling pathway. Mol Med Rep 2018; 17(6): 7497-504. doi: 10.3892/mmr.2018.8811 PMID: 29620264
  18. Krieger ML, Eckstein N, Schneider V, et al. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int J Pharm 2010; 389(1-2): 10-7. doi: 10.1016/j.ijpharm.2009.12.061 PMID: 20060458
  19. Shaikh IM, Tan KB, Chaudhury A, et al. Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft. J Control Release 2013; 172(3): 852-61. doi: 10.1016/j.jconrel.2013.10.025 PMID: 24459693
  20. Turk MJ, Waters DJ, Low PS. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 2004; 213(2): 165-72. doi: 10.1016/j.canlet.2003.12.028 PMID: 15327831
  21. Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45(5): 1457-501. doi: 10.1039/C5CS00798D PMID: 26776487
  22. Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med 2021; 11(6): 571. doi: 10.3390/jpm11060571 PMID: 34207137
  23. Hamdy NM, Eskander G, Basalious EB. Insights on the dynamic innovative tumor targeted-nanoparticles-based drug delivery systems activation techniques. Int J Nanomed 2022; 17: 6131-55. doi: 10.2147/IJN.S386037 PMID: 36514378
  24. Overchuk M, Zheng G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018; 156: 217-37. doi: 10.1016/j.biomaterials.2017.10.024 PMID: 29207323
  25. Shen Z, Chen T, Ma X, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 2017; 11(11): 10992-1004. doi: 10.1021/acsnano.7b04924 PMID: 29039917
  26. Sanna V, Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies. ACS Med Chem Lett 2020; 11(6): 1069-73. doi: 10.1021/acsmedchemlett.0c00075 PMID: 32550978
  27. Zhao X, Yang CX, Chen LG, Yan XP. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat Commun 2017; 8(1): 14998. doi: 10.1038/ncomms14998 PMID: 28524865
  28. Zhang J, Lin Y, Lin Z, et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv Sci 2022; 9(5): 2103444. doi: 10.1002/advs.202103444 PMID: 34927373
  29. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37. doi: 10.1038/nrc.2016.108 PMID: 27834398
  30. Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44(10): 1123-34. doi: 10.1021/ar200054n PMID: 21692448
  31. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394. doi: 10.1016/j.heliyon.2022.e09394 PMID: 35600452
  32. Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65. doi: 10.34172/apb.2020.021 PMID: 32373485
  33. Michy T, Massias T, Bernard C, et al. Verteporfin-loaded lipid nanoparticles improve ovarian cancer photodynamic therapy in vitro and in vivo. Cancers (Basel) 2019; 11(11): 1760. doi: 10.3390/cancers11111760 PMID: 31717427
  34. Han S, Dwivedi P, Mangrio FA, et al. Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer. Artif Cells Nanomed Biotechnol 2019; 47(1): 957-67. doi: 10.1080/21691401.2019.1576705 PMID: 30892967
  35. Hanafy N, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers 2018; 10(7): 238. doi: 10.3390/cancers10070238 PMID: 30037052
  36. Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol 2013; 5(1): 96-107. doi: 10.1039/c2ib20135f PMID: 22869005
  37. Mutlu-Agardan NB, Sarisozen C, Torchilin VP. Cytotoxicity of novel redox sensitive PEG 2000-SS-PTX micelles against drug-resistant ovarian and breast cancer cells. Pharm Res 2020; 37(3): 65. doi: 10.1007/s11095-020-2759-4 PMID: 32166361
  38. Li G, Xu W, Shi Y, Chen M, Peng D. Construction of a new dual-responsive nano-drug delivery system for matrix metalloproteinases and adenosine triphosphate in ovarian cancer using nanomicelles. J Biomed Nanotechnol 2022; 18(3): 718-28. doi: 10.1166/jbn.2022.3303 PMID: 35715904
  39. Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: Synthesis, characterization and pharmacokinetic study. Int J Polym Mater 2021; 70(14): 1012-26. doi: 10.1080/00914037.2020.1776282
  40. Wu Y, Lv S, Li Y, et al. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater Sci 2020; 8(3): 949-59. doi: 10.1039/C9BM01662G PMID: 31840696
  41. Groo AC, Hedir S, Since M, et al. Pyridoclax-loaded nanoemulsion for enhanced anticancer effect on ovarian cancer. Int J Pharm 2020; 587: 119655. doi: 10.1016/j.ijpharm.2020.119655 PMID: 32712252
  42. Ganta S, Singh A, Patel NR, et al. Development of EGFR-targeted nanoemulsion for imaging and novel platinum therapy of ovarian cancer. Pharm Res 2014; 31(9): 2490-502. doi: 10.1007/s11095-014-1345-z PMID: 24643932
  43. Sahib Abed H, Zarearki P, Khojasteh V, Karimi E, Shahrokhabadi K, Rastegar Moghaddam Poorbagher M. Inhibition the growth of human ovarian cancer cells (A2780) via cell proliferation and angiogenesis by viola odorata essential oil nanoemulsion. Waste Biomass Valoriz 2023; 1-10. doi: 10.1007/s12649-023-02314-1
  44. Zheng N, Gao Y, Ji H, et al. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer. J Drug Target 2016; 24(7): 663-9. doi: 10.3109/1061186X.2015.1135335 PMID: 26710274
  45. Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnol 2022; 20(1): 501. doi: 10.1186/s12951-022-01650-z PMID: 36434667
  46. Taheri-Ledari R, Zolfaghari E, Zarei-Shokat S, Kashtiaray A, Maleki A. A magnetic antibody-conjugated nano-system for selective delivery of Ca(OH)2 and taxotere in ovarian cancer cells. Commun Biol 2022; 5(1): 995. doi: 10.1038/s42003-022-03966-w PMID: 36130999
  47. Ma X, Zhou W, Zhang R, et al. Minimally invasive injection of biomimetic Nano@Microgel for in situ ovarian cancer treatment through enhanced photodynamic reactions and photothermal combined therapy. Mater Today Bio 2023; 20: 100663. doi: 10.1016/j.mtbio.2023.100663 PMID: 37273798
  48. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 2017; 22(2): 314-26. doi: 10.1016/j.drudis.2016.09.013 PMID: 27671487
  49. Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J Biol Eng 2022; 16(1): 18. doi: 10.1186/s13036-022-00298-5 PMID: 35879774
  50. Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of dendrimers. Biomolecules 2019; 9(8): 330. doi: 10.3390/biom9080330 PMID: 31374911
  51. Cai L, Xu G, Shi C, Guo D, Wang X, Luo J. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 2015; 37: 456-68. doi: 10.1016/j.biomaterials.2014.10.044 PMID: 25453973
  52. Cruz A, Mota P, Ramos C, et al. Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance. Antioxidants 2020; 9(2): 133. doi: 10.3390/antiox9020133 PMID: 32028640
  53. Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts 2012; 2(2): 71-81. PMID: 23678444
  54. Haggag YA, Ibrahim RR, Hafiz AA. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int J Nanomed 2020; 15: 1625-42. doi: 10.2147/IJN.S241428 PMID: 32210557
  55. Wang JTW, Spinato C, Klippstein R, et al. Neutron-irradiated antibody-functionalised carbon nanocapsules for targeted cancer radiotherapy. Carbon 2020; 162: 410-22. doi: 10.1016/j.carbon.2020.02.060
  56. Staffhorst RWHM, van der Born K, Erkelens CAM, et al. Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts. Anticancer Drugs 2008; 19(7): 721-7. doi: 10.1097/CAD.0b013e328304355f PMID: 18594214
  57. Vergara D, Bellomo C, Zhang X, et al. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomedicine 2012; 8(6): 891-9. doi: 10.1016/j.nano.2011.10.014 PMID: 22100754
  58. Alizadeh L, Alizadeh E, Zarebkohan A, Ahmadi E, Rahmati-Yamchi M, Salehi R. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J Nanopart Res 2020; 22(1): 5. doi: 10.1007/s11051-019-4735-7
  59. İnce İ, Yıldırım Y, Güler G, et al. Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J Radioanal Nucl Chem 2020; 324(1): 71-85. doi: 10.1007/s10967-020-07058-z
  60. Fraguas-Sánchez AI, Torres-Suárez AI, Cohen M, et al. PLGA nanoparticles for the intraperitoneal administration of CBD in the treatment of ovarian cancer: In vitro and in ovo assessment. Pharmaceutics 2020; 12(5): 439. doi: 10.3390/pharmaceutics12050439 PMID: 32397428
  61. Sánchez-Ramírez DR, Domínguez-Ríos R, Juárez J, et al. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer. Mater Sci Eng C 2020; 116: 111196. doi: 10.1016/j.msec.2020.111196 PMID: 32806317
  62. Song M, Fang Z, Wang J, Liu K. A nano-targeted co-delivery system based on gene regulation and molecular blocking strategy for synergistic enhancement of platinum chemotherapy sensitivity in ovarian cancer. Int J Pharm 2023; 640: 123022. doi: 10.1016/j.ijpharm.2023.123022 PMID: 37156306
  63. Wang Z, Guo B, Yue S, Zhao S, Meng F, Zhong Z. HER-2-mediated nano-delivery of molecular targeted drug potently suppresses orthotopic epithelial ovarian cancer and metastasis. Int J Pharm 2022; 625: 122126. doi: 10.1016/j.ijpharm.2022.122126 PMID: 35995316
  64. Dana P, Bunthot S, Suktham K, et al. Active targeting liposome- PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces 2020; 196: 111270. doi: 10.1016/j.colsurfb.2020.111270 PMID: 32777659
  65. Wang L, Liang TT. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express 2020; 10(1): 54. doi: 10.1186/s13568-020-00990-z PMID: 32185543
  66. Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery. Nanotheranostics 2020; 4(1): 40-56. doi: 10.7150/ntno.37738 PMID: 31911893
  67. Singh P, Choudhury S, Kulanthaivel S, et al. Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma. Colloids Surf B Biointerfaces 2018; 162: 202-11. doi: 10.1016/j.colsurfb.2017.11.035 PMID: 29195229
  68. Shariare MH, Khan MA, Al-Masum A, Khan JH, Uddin J, Kazi M. Development of stable liposomal drug delivery system of thymoquinone and its in vitro anticancer studies using breast cancer and cervical cancer cell lines. Molecules 2022; 27(19): 6744. doi: 10.3390/molecules27196744 PMID: 36235288
  69. Parveen S, Kumar S, Pal S, Yadav NP, Rajawat J, Banerjee M. Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery. Int J Pharm 2023; 643: 123212. doi: 10.1016/j.ijpharm.2023.123212 PMID: 37429561
  70. Adeyemi SA, Az-Zamakhshariy Z, Choonara YE. In vitro prototyping of a nano-organogel for thermo-sonic intra-cervical delivery of 5-fluorouracil-loaded solid lipid nanoparticles for cervical cancer. AAPS PharmSciTech 2023; 24(5): 123. doi: 10.1208/s12249-023-02583-y PMID: 37226039
  71. Eslamian F, Keshtmand Z, Hesampour A. Preparation of Artemisia turcomanic encapsulated niosomal nanocarriers and evaluation of anticancer activities and apoptosis gene expression analysis in hela cells. Chem Biodivers 2023; 20(5): e202201160. doi: 10.1002/cbdv.202201160 PMID: 37026601
  72. Solanki R, Jangid AK, Jadav M, Kulhari H, Patel S. Folate functionalized and evodiamine-loaded pluronic nanomicelles for augmented cervical cancer cell killing. Macromol Biosci 2023; 23(9): 2300077. doi: 10.1002/mabi.202300077 PMID: 37163974
  73. Liao J, Peng H, Wei X, et al. A bio-responsive 6-mercaptopurine/doxorubicin based "Click Chemistry" polymeric prodrug for cancer therapy. Mater Sci Eng C 2020; 108: 110461. doi: 10.1016/j.msec.2019.110461 PMID: 31924029
  74. Frank LA, Gazzi RP, Mello PA, et al. Anti-HPV nanoemulsified-imiquimod: A new and potent formulation to treat cervical cancer. AAPS PharmSciTech 2020; 21(2): 54. doi: 10.1208/s12249-019-1558-x PMID: 31907712
  75. AlMotwaa SM. Coupling Ifosfamide to nanoemulsion-based clove oil enhances its toxicity on malignant breast cancer and cervical cancer cells. Pharmacia 2021; 68(4): 779-87. doi: 10.3897/pharmacia.68.e68291
  76. Periasamy VS, Subash-Babu P, Muthukumaran VR, Akbarsha MA, Alshatwi AA. In vitro cytotoxic effect of formulated semecarpus ghee nanoemulsion on human cervical cancer (SiHa) cells. Adv Sci Lett 2012; 6(1): 75-9. doi: 10.1166/asl.2012.2037
  77. Saffari I, Motallebi Moghanjoghi A, Sharafati Chaleshtori R, Ataee M, Khaledi A. Nanoemulsification of rose (Rosa damascena) essential oil: Characterization, anti-Salmonella, in vitro cytotoxicity to cancer cells, and advantages in sheep meat application. J Food Qual 2023; 2023: 1-15.
  78. De Matos RPA, Calmon MF, Amantino CF, et al. Effect of curcumin-nanoemulsion associated with photodynamic therapy in cervical carcinoma cell lines. Biomed Res Int 2018; 2018: 4057959. doi: 10.1155/2018/4057959
  79. Banerjee SL, Khamrai M, Sarkar K, Singha NK, Kundu PP. Modified chitosan encapsulated core-shell Ag Nps for superior antimicrobial and anticancer activity. Int J Biol Macromol 2016; 85: 157-67. doi: 10.1016/j.ijbiomac.2015.12.068 PMID: 26724687
  80. Mousavi SBS, Dehpour HA, Farkhande P. Effects of cytotoxicity of nanoparticles of Ag/Si_O_P/Gelatin on uterus cancer cell lines. Anim Biol J 2015; 7(3): 67-72.
  81. Thomas S, Gunasangkaran G, Arumugam VA, Muthukrishnan S. Synthesis and characterization of zinc oxide nanoparticles of Solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer. Biol Trace Elem Res 2022; 200(6): 2684-97. doi: 10.1007/s12011-021-02898-6 PMID: 34448982
  82. Svenningsen SW, Janaszewska A, Ficker M, Petersen JF, Klajnert-Maculewicz B, Christensen JB. Two for the price of one: PAMAM-dendrimers with mixed Phosphoryl choline and oligomeric poly (caprolactone) surfaces. Bioconjug Chem 2016; 27(6): 1547-57. doi: 10.1021/acs.bioconjchem.6b00213 PMID: 27244598
  83. Luong D, Kesharwani P, Killinger BA, et al. Solubility enhancement and targeted delivery of a potent anticancer flavonoid analogue to cancer cells using ligand decorated dendrimer nano-architectures. J Colloid Interface Sci 2016; 484: 33-43. doi: 10.1016/j.jcis.2016.08.061 PMID: 27585998
  84. Lee SR, Kim YJ. Hydrophilic chlorin e6-poly (amidoamine) dendrimer nanoconjugates for enhanced photodynamic therapy. Nanomaterials 2018; 8(6): 445. doi: 10.3390/nano8060445 PMID: 29912159
  85. Yadav N, Tripathi A, Parveen A, Parveen S, Banerjee M. PLGA- quercetin nano-formulation inhibits cancer progression via mitochondrial dependent caspase-3, 7 and independent FoxO1 activation with concomitant PI3K/AKT suppression. Pharmaceutics 2022; 14(7): 1326. doi: 10.3390/pharmaceutics14071326 PMID: 35890222
  86. Kavya KV, Vargheese S, Shukla S, et al. A cationic amino acid polymer nanocarrier synthesized in supercritical CO2 for co-delivery of drug and gene to cervical cancer cells. Colloids Surf B Biointerfaces 2022; 216: 112584. doi: 10.1016/j.colsurfb.2022.112584 PMID: 35617878
  87. Liao J, Zheng H, Hu R, et al. Hyaluronan based tumor-targeting and pH-responsive shell cross-linkable nanoparticles for the controlled release of doxorubicin. J Biomed Nanotechnol 2018; 14(3): 496-509. doi: 10.1166/jbn.2018.2510 PMID: 29663922
  88. Saha B, Choudhury N, Seal S, Ruidas B, De P. Aromatic nitrogen mustard-based autofluorescent amphiphilic brush copolymer as ph-responsive drug delivery vehicle. Biomacromolecules 2019; 20(1): 546-57. doi: 10.1021/acs.biomac.8b01468 PMID: 30521313
  89. Frank LA, Gazzi RP, de Andrade Mello P, Buffon A, Pohlmann AR, Guterres SS. Imiquimod-loaded nanocapsules improve cytotoxicity in cervical cancer cell line. Eur J Pharm Biopharm 2019; 136: 9-17. doi: 10.1016/j.ejpb.2019.01.001 PMID: 30630060
  90. Fong P, Cheong C, Mak K, et al. Effects of cordycepin, gold nanostar, and their combination on endometrial cancer cells. Nat Prod Commun 2020; 15(8): 1934578X20946939.
  91. Zhu B, Xie N, Yue L, et al. Formulation and characterization of a novel anti-human endometrial cancer supplement by gold nanoparticles green-synthesized using Spinacia oleracea L. leaf aqueous extract. Arab J Chem 2022; 15(3): 103576. doi: 10.1016/j.arabjc.2021.103576
  92. Taghavi F, Saljooghi AS, Gholizadeh M, Ramezani M. Deferasirox-coated iron oxide nanoparticles as a potential cytotoxic agent. MedChemComm 2016; 7(12): 2290-8. doi: 10.1039/C6MD00293E
  93. Gong X, Pu X, Wang J, et al. Enhancing of nanocatalyst-driven chemodynaminc therapy for endometrial cancer cells through inhibition of PINK1/Parkin-mediated mitophagy. Int J Nanomed 2021; 16: 6661-79. doi: 10.2147/IJN.S329341 PMID: 34616150
  94. Edwards K, Yao S, Pisano S, et al. Hyaluronic acid-functionalized nanomicelles enhance SAHA efficacy in 3D endometrial cancer models. Cancers 2021; 13(16): 4032. doi: 10.3390/cancers13164032 PMID: 34439185
  95. Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater 2017; 29(32): 1700996. doi: 10.1002/adma.201700996 PMID: 28643452
  96. Bergs JW, Wacker MG, Hehlgans S, et al. The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochim Biophys Acta 2015; 1856(1): 130-43. PMID: 26142869
  97. Geng F, Song K, Xing JZ, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011; 22(28): 285101. doi: 10.1088/0957-4484/22/28/285101 PMID: 21654036
  98. Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010; 3(1): 11. doi: 10.1186/1757-2215-3-11 PMID: 20429876
  99. Hu R, Zheng M, Wu J, et al. Core-shell magnetic gold nanoparticles for magnetic field-enhanced radio-photothermal therapy in cervical cancer. Nanomaterials 2017; 7(5): 111. doi: 10.3390/nano7050111 PMID: 28492507
  100. Maury P, Mondini M, Chargari C, et al. Clinical transfer of AGuIX®-based radiation treatments for locally advanced cervical cancer: MR quantification and in vitro insights in the NANOCOL clinical trial framework. Nanomedicine 2023; 50: 102676. doi: 10.1016/j.nano.2023.102676 PMID: 37084803
  101. Geng F, Xing JZ, Chen J, et al. Pegylated glucose gold nanoparticles for improved in-vivo bio-distribution and enhanced radiotherapy on cervical cancer. J Biomed Nanotechnol 2014; 10(7): 1205-16. doi: 10.1166/jbn.2014.1855 PMID: 24804541
  102. Zhang XD, Chen J, Min Y, et al. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv Funct Mater 2014; 24(12): 1718-29. doi: 10.1002/adfm.201302312
  103. Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm 2019; 16(1): 1-23. doi: 10.1021/acs.molpharmaceut.8b00810 PMID: 30452861
  104. Aguilar-Pérez KM, Avilés-Castrillo JI, Ruiz-Pulido G, Medina DI, Parra-Saldivar R, Iqbal HMN. Nanoadsorbents in focus for the remediation of environmentally-related contaminants with rising toxicity concerns. Sci Total Environ 2021; 779: 146465. doi: 10.1016/j.scitotenv.2021.146465 PMID: 34030232
  105. Muthu MS, Feng S-S. Theranostic liposomes for cancer diagnosis and treatment: Current development and pre-clinical success. Taylor & Francis 2013; pp. 151-5.
  106. Rasool M, Malik A, Waquar S, et al. New challenges in the use of nanomedicine in cancer therapy. Bioengineered 2022; 13(1): 759-73. doi: 10.1080/21655979.2021.2012907 PMID: 34856849
  107. Gurunathan S, Qasim M, Park CH, et al. Cytotoxicity and transcriptomic analyses of biogenic palladium nanoparticles in human ovarian cancer cells (SKOV3). Nanomaterials 2019; 9(5): 787. doi: 10.3390/nano9050787 PMID: 31121951
  108. Yuan Y-G, Zhang S, Hwang J-Y, Kong I-K. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev 2018; 2018: 6121328. doi: 10.1155/2018/6121328
  109. Baharara J, Ramezani T, Divsalar A, Mousavi M, Seyedarabi A. Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna J Med Biotechnol 2016; 8(2): 75-83. PMID: 27141266
  110. Mills KA, Quinn JM, Roach ST, et al. p5RHH nanoparticle-mediated delivery of AXL siRNA inhibits metastasis of ovarian and uterine cancer cells in mouse xenografts. Sci Rep 2019; 9(1): 4762. doi: 10.1038/s41598-019-41122-3 PMID: 30886159
  111. Medina-Gutiérrez E, García-León A, Gallardo A, et al. Potent anticancer activity of CXCR4-targeted nanostructured toxins in aggressive endometrial cancer models. Cancers 2022; 15(1): 85. doi: 10.3390/cancers15010085 PMID: 36612081
  112. Lv Y, Zou Y, Yang L. Uncertainty and sensitivity analysis of properties of phase change micro/nanoparticles for thermal protection during cryosurgery. Forsch Ingwes 2012; 76(1-2): 41-50. doi: 10.1007/s10010-012-0153-z
  113. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159-65. doi: 10.1093/toxsci/kfj122 PMID: 16443688
  114. Kratz F. A clinical update of using albumin as a drug vehicle - A commentary. J Control Release 2014; 190: 331-6. doi: 10.1016/j.jconrel.2014.03.013 PMID: 24637463
  115. Alberts DS, Blessing JA, Landrum LM, et al. Phase II trial of nab- paclitaxel in the treatment of recurrent or persistent advanced cervix cancer: A gynecologic oncology group study. Gynecol Oncol 2012; 127(3): 451-5. doi: 10.1016/j.ygyno.2012.09.008 PMID: 22986144
  116. Fu S, Naing A, Moulder SL, et al. Phase I trial of hepatic arterial infusion of nanoparticle albumin-bound paclitaxel: Toxicity, pharmacokinetics, and activity. Mol Cancer Ther 2011; 10(7): 1300-7. doi: 10.1158/1535-7163.MCT-11-0259 PMID: 21571911
  117. Jasrotia R, Dhanjal DS, Bhardwaj S, et al. Nanotechnology based vaccines: Cervical cancer management and perspectives. J Drug Deliv Sci Technol 2022; 71: 103351. doi: 10.1016/j.jddst.2022.103351
  118. Kour S, Biswas I, Sheoran S, et al. Artificial intelligence and nanotechnology for cervical cancer treatment: Current status and future perspectives. J Drug Deliv Sci Technol 2023; 83: 104392. doi: 10.1016/j.jddst.2023.104392
  119. Zafar A, Alruwaili NK, Imam SS, et al. Novel nanotechnology approaches for diagnosis and therapy of breast, ovarian and cervical cancer in female: A review. J Drug Deliv Sci Technol 2021; 61: 102198. doi: 10.1016/j.jddst.2020.102198

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers