Revisiting the Mitochondrial Function and Communication in Neurodegenerative Diseases


Cite item

Full Text

Abstract

Neurodegenerative disorders are distinguished by the progressive loss of anatomically or physiologically relevant neural systems. Atypical mitochondrial morphology and metabolic malfunction are found in many neurodegenerative disorders. Alteration in mitochondrial function can occur as a result of aberrant mitochondrial DNA, altered nuclear enzymes that interact with mitochondria actively or passively, or due to unexplained reasons. Mitochondria are intimately linked to the Endoplasmic reticulum (ER), and ER-mitochondrial communication governs several of the physiological functions and procedures that are disrupted in neurodegenerative disorders. Numerous researchers have associated these disorders with ER-mitochondrial interaction disturbance. In addition, aberrant mitochondrial DNA mutation and increased ROS production resulting in ionic imbalance and leading to functional and structural alterations in the brain as well as cellular damage may have an essential role in disease progression via mitochondrial malfunction. In this review, we explored the evidence highlighting the role of mitochondrial alterations in neurodegenerative pathways in most serious ailments, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD).

About the authors

Nitu Wankhede

, Smt. Kishoritai Bhoyar College of Pharmacy

Email: info@benthamscience.net

Mayur Kale

, Smt Kishoritai Bhoyar College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Mohit Umare

, Smt. Kishoritai Bhoyar College of Pharmacy

Email: info@benthamscience.net

Sanket Lokhande

, Smt Kishoritai Bhoyar College of Pharmacy

Email: info@benthamscience.net

Aman Upaganlawar

, SNJB’s Shriman Sureshdada Jain College of Pharmacy

Email: info@benthamscience.net

Pranay Wal

Department of Pharmacy, Pranveer Singh Institute of Technology

Email: info@benthamscience.net

Brijesh Taksande

, Smt Kishoritai Bhoyar College of Pharmacy

Email: info@benthamscience.net

Milind Umekar

, Smt Kishoritai Bhoyar College of Pharmacy

Email: info@benthamscience.net

Prasanna Khandige

Department of Conservative, Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University)

Email: info@benthamscience.net

Bhupendra Singh

School of Pharmacy, Graphic Era Hill University

Email: info@benthamscience.net

Vandana Sadananda

Department of Conservative, Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University)

Email: info@benthamscience.net

Seema Ramniwas

University Centre for Research and Development, University of Biotechnolog, Chandigarh University

Email: info@benthamscience.net

Tapan Behl

Amity School of Pharmaceutical Sciences,, Amity University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Rey F, Ottolenghi S, Giallongo T, et al. Mitochondrial metabolism as target of the neuroprotective role of erythropoietin in Parkinson’s disease. Antioxidants 2021; 10(1): 121. doi: 10.3390/antiox10010121 PMID: 33467745
  2. Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 2007; 292(2): C670-86. doi: 10.1152/ajpcell.00213.2006 PMID: 17020935
  3. Brown TA, Tkachuk AN, Shtengel G, et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 2011; 31(24): 4994-5010. doi: 10.1128/MCB.05694-11 PMID: 22006021
  4. Chang DTW, Honick AS, Reynolds IJ. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 2006; 26(26): 7035-45. doi: 10.1523/JNEUROSCI.1012-06.2006 PMID: 16807333
  5. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1066-77. doi: 10.1016/j.bbadis.2016.11.010 PMID: 27836629
  6. Pickrell AM, Fukui H, Wang X, Pinto M, Moraes CT. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions. J Neurosci 2011; 31(27): 9895-904. doi: 10.1523/JNEUROSCI.6223-10.2011 PMID: 21734281
  7. Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007; 292(2): C641-57. doi: 10.1152/ajpcell.00222.2006 PMID: 17092996
  8. Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 2008; 22(12): 1577-90. doi: 10.1101/gad.1658508 PMID: 18559474
  9. Benzi G, Pastoris O, Marzatico F, Villa RF, Dagani F, Curti D. The mitochondrial electron transfer alteration as a factor involved in the brain aging. Neurobiol Aging 1992; 13(3): 361-8. doi: 10.1016/0197-4580(92)90109-B PMID: 1320745
  10. Tiwari P, Wankhede N, Badole S, et al. Mitochondrial dysfunction in ageing: Involvement of oxidative stress and role of melatonin. Bull Environ Pharmacol Life Sci 2021; 156-72.
  11. Upaganlawar AB, Wankhede NL, Kale MB, et al. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143: 112146. doi: 10.1016/j.biopha.2021.112146 PMID: 34507113
  12. Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3): 560-9. doi: 10.1016/j.cell.2015.10.001 PMID: 26496603
  13. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci Ther 2017; 23(1): 5-22. doi: 10.1111/cns.12655 PMID: 27873462
  14. Audano M, Pedretti S, Ligorio S, et al. "The loss of golden touch": Mitochondria-organelle interactions, metabolism, and cancer. Cells 2020; 9(11): 2519. doi: 10.3390/cells9112519 PMID: 33233365
  15. Xia M, Zhang Y, Jin K, Lu Z, Zeng Z, Xiong W. Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci 2019; 9(1): 27. doi: 10.1186/s13578-019-0289-8 PMID: 30931098
  16. Soto-Heredero G, Baixauli F, Mittelbrunn M. Interorganelle communication between mitochondria and the endolysosomal system. Front Cell Dev Biol 2017; 5: 95. doi: 10.3389/fcell.2017.00095 PMID: 29164114
  17. Herst PM, Rowe MR, Carson GM, Berridge MV. Functional mitochondria in health and disease. Front Endocrinol 2017; 8: 296. doi: 10.3389/fendo.2017.00296 PMID: 29163365
  18. Pack SC, Kim HR, Lim SW, et al. Usefulness of plasma epigenetic changes of five major genes involved in the pathogenesis of colorectal cancer. Int J Colorectal Dis 2013; 28(1): 139-47. doi: 10.1007/s00384-012-1566-8 PMID: 22990173
  19. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18(10): 1208-46. doi: 10.1089/ars.2011.4498 PMID: 22978553
  20. Badole SP, Wankhede NL, Tiwari PL, et al. The importance of mitochondrial function in neurons: Focus on therapeutic targets in neurodegeneration. Adv Biores 2021; 12(1): 234-44. doi: 10.15515/abr.0976-4585.12.1.234244
  21. Marde VS, Tiwari PL, Wankhede NL, et al. Neurodegenerative disorders associated with genes of mitochondria. Future J Pharm Sci 2021; 7(1): 66. doi: 10.1186/s43094-021-00215-5
  22. Banarase TA, Sammeta SS, Wankhede NL, et al. Mitophagy regulation in aging and neurodegenerative disease. Biophys Rev 2023; 15(2): 239-55. doi: 10.1007/s12551-023-01057-6 PMID: 37124925
  23. Wankhede NL, Kale MB, Bawankule AK, et al. Overview on the polyphenol avenanthramide in oats (Avena sativa Linn.) as regulators of PI3K signaling in the management of neurodegenerative diseases. Nutrients 2023; 15(17): 3751. doi: 10.3390/nu15173751 PMID: 37686782
  24. Waypa GB, Smith KA, Schumacker PT. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol Aspects Med 2016; 47-48: 76-89. doi: 10.1016/j.mam.2016.01.002 PMID: 26776678
  25. Indo HP, Yen HC, Nakanishi I, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr 2015; 56(1): 1-7. doi: 10.3164/jcbn.14-42 PMID: 25834301
  26. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry 2005; 70(2): 200-14. doi: 10.1007/s10541-005-0102-7 PMID: 15807660
  27. Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 2012; 120(3): 419-29. doi: 10.1111/j.1471-4159.2011.07581.x PMID: 22077634
  28. Golpich M, Rahmani B, Mohamed Ibrahim N, et al. Preconditioning as a potential strategy for the prevention of Parkinson’s disease. Mol Neurobiol 2015; 51(1): 313-30. doi: 10.1007/s12035-014-8689-6 PMID: 24696268
  29. Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature 2008; 454(7203): 463-9. doi: 10.1038/nature07206 PMID: 18650917
  30. Sharma J, Johnston MV, Hossain MA. Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neurosci 2014; 15(1): 9. doi: 10.1186/1471-2202-15-9 PMID: 24410996
  31. Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 2012; 53(11): 2043-53. doi: 10.1016/j.freeradbiomed.2012.09.014 PMID: 23000245
  32. Okamoto K, Kondo-Okamoto N. Mitochondria and autophagy: Critical interplay between the two homeostats. Biochim Biophys Acta, Gen Subj 2012; 1820(5): 595-600. doi: 10.1016/j.bbagen.2011.08.001 PMID: 21846491
  33. Rosenstock J, Tuchman M, LaMoreaux L, Sharma U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: A double-blind, placebo-controlled trial. Pain 2004; 110(3): 628-38. doi: 10.1016/j.pain.2004.05.001 PMID: 15288403
  34. Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol 2015; 4: 6-13. doi: 10.1016/j.redox.2014.11.006 PMID: 25479550
  35. Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci 2019; 218: 165-84. doi: 10.1016/j.lfs.2018.12.029 PMID: 30578866
  36. Mangrulkar SV, Wankhede NL, Kale MB, et al. Mitochondrial dysfunction as a signaling target for therapeutic intervention in major neurodegenerative disease. Neurotox Res 2023; 41(6): 708-29. doi: 10.1007/s12640-023-00647-2 PMID: 37162686
  37. Shaik A, Schiavi A, Ventura N. Mitochondrial autophagy promotes healthy aging. Cell Cycle 2016; 15(14): 1805-6. doi: 10.1080/15384101.2016.1181876 PMID: 27115480
  38. Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2019; 47: 151-73. doi: 10.1016/j.mito.2018.11.002 PMID: 30408594
  39. Itoh K, Nakamura K, Iijima M, Sesaki H. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 2013; 23(2): 64-71. doi: 10.1016/j.tcb.2012.10.006 PMID: 23159640
  40. Jiao L, Du X, Li Y, Jiao Q, Jiang H. Role of mitophagy in neurodegenerative diseases and potential tagarts for therapy. Mol Biol Rep 2022; 49(11): 10749-60. doi: 10.1007/s11033-022-07738-x PMID: 35794507
  41. Fernández-Vizarra E, Enriquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P. Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones. Curr Genet 2008; 54(1): 13-22. doi: 10.1007/s00294-008-0194-x PMID: 18481068
  42. Pickrell AM, Fukui H, Moraes CT. The role of cytochrome c oxidase deficiency in ROS and amyloid plaque formation. J Bioenerg Biomembr 2009; 41(5): 453-6. doi: 10.1007/s10863-009-9245-3 PMID: 19795195
  43. Chang X, Zhang W, Zhao Z, et al. Regulation of mitochondrial quality control by natural drugs in the treatment of cardiovascular diseases: Potential and advantages. Front Cell Dev Biol 2020; 8: 616139. doi: 10.3389/fcell.2020.616139 PMID: 33425924
  44. Chandurkar P, Dhokne M, Wankhede N, et al. Modulation of mitochondrial function in elderly brain: Involvement of autophagy and apoptosis. INNOSC Theranostics Pharmacol Sci 2023; 4(2): 33-45. doi: 10.36922/itps.v4i2.205
  45. Umare MD, Wankhede NL, Bajaj KK, et al. Interweaving of reactive oxygen species and major neurological and psychiatric disorders. Ann Pharm Fr 2022; 80(4): 409-25. doi: 10.1016/j.pharma.2021.11.004 PMID: 34896378
  46. Orrenius S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 2007; 39(2-3): 443-55. doi: 10.1080/03602530701468516 PMID: 17786631
  47. Vringer E, Tait SWG. Mitochondria and inflammation: Cell death heats up. Front Cell Dev Biol 2019; 7(7): 100. doi: 10.3389/fcell.2019.00100 PMID: 31316979
  48. Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol 2020; 8: 467. doi: 10.3389/fcell.2020.00467 PMID: 32671064
  49. Wilkins MR, Sanchez JC, Williams KL, Hochstrasser DF. Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 1996; 17(5): 830-8. doi: 10.1002/elps.1150170504 PMID: 8783009
  50. Schrader M, Godinho LF, Costello JL, Islinger M. The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol 2015; 3(56): 56. doi: 10.3389/fcell.2015.00056 PMID: 26442263
  51. Simmen T, Tagaya M. Organelle communication at membrane contact sites (MCS): From curiosity to center stage in cell biology and biomedical research. Adv Exp Med Biol 2017; 997: 1-12. doi: 10.1007/978-981-10-4567-7_1 PMID: 28815518
  52. Soledad RB, Charles S, Samarjit D. The secret messages between mitochondria and nucleus in muscle cell biology. Arch Biochem Biophys 2019; 666: 52-62. doi: 10.1016/j.abb.2019.03.019 PMID: 30935885
  53. Sammeta SS, Banarase TA, Rahangdale SR, et al. Molecular understanding of ER-MT communication dysfunction during neurodegeneration. Mitochondrion 2023; 72: 59-71. doi: 10.1016/j.mito.2023.07.005 PMID: 37495165
  54. Kumar V, Maity S. ER stress-sensor proteins and er-mitochondrial crosstalk-signaling beyond (ER) stress response. Biomolecules 2021; 11(2): 173. doi: 10.3390/biom11020173 PMID: 33525374
  55. Schon EA, Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 2013; 55: 26-36. doi: 10.1016/j.mcn.2012.07.011 PMID: 22922446
  56. Wilson EL, Metzakopian E. ER-mitochondria contact sites in neurodegeneration: Genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ 2021; 28(6): 1804-21. doi: 10.1038/s41418-020-00705-8 PMID: 33335290
  57. Wakana Y, Takai S, Nakajima K, et al. Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated Degradation. Mol Biol Cell 2008; 19(5): 1825-36. doi: 10.1091/mbc.e07-08-0781 PMID: 18287538
  58. Nguyen M, Breckenridge DG, Ducret A, Shore GC. Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol Cell Biol 2000; 20(18): 6731-40. doi: 10.1128/MCB.20.18.6731-6740.2000 PMID: 10958671
  59. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 2011; 30(3): 556-68. doi: 10.1038/emboj.2010.346 PMID: 21183955
  60. Torres S, Balboa E, Zanlungo S, Enrich C, Garcia-Ruiz C, Fernandez-Checa JC. Lysosomal and mitochondrial liaisons in niemann-pick disease. Front Physiol 2017; 8: 982. doi: 10.3389/fphys.2017.00982 PMID: 29249985
  61. Upaganlawar A, Kale MB, Bajaj K, et al. Exercise and nutraceuticals: Eminent approach for diabetic neuropathy. Curr Mol Pharmacol 2021; 15(1): 108-28. doi: 10.2174/1874467214666210629123010 PMID: 34191703
  62. Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci USA 2002; 99(4): 1876-81. doi: 10.1073/pnas.261709098 PMID: 11854488
  63. Saveri P, De Luca M, Nisi V, et al. Charcot-marie-tooth type 2B: A new phenotype associated with a novel RAB7A mutation and inhibited EGFR degradation. Cells 2020; 9(4): 1028. doi: 10.3390/cells9041028 PMID: 32326241
  64. Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009; 18(R2): R169-76. doi: 10.1093/hmg/ddp326 PMID: 19808793
  65. Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2018; 19(2): 63-80. doi: 10.1038/nrn.2017.170 PMID: 29348666
  66. Giorgi C, Agnoletto C, Bononi A, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2012; 12(1): 77-85. doi: 10.1016/j.mito.2011.07.004 PMID: 21798374
  67. Rowan MJ, Klyubin I, Wang Q, Anwyl R. Mechanisms of the inhibitory effects of amyloid β-protein on synaptic plasticity. Exp Gerontol 2004; 39(11-12): 1661-7. doi: 10.1016/j.exger.2004.06.020 PMID: 15582282
  68. Picard M, Ritchie D, Wright KJ, et al. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 2010; 9(6): 1032-46. doi: 10.1111/j.1474-9726.2010.00628.x PMID: 20849523
  69. Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 1995; 65(5): 2146-56. doi: 10.1046/j.1471-4159.1995.65052146.x PMID: 7595501
  70. Javaid SF, Giebel C, Khan MAB, Hashim MJ. Epidemiology of Alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000 Res 2021; 10: 425. doi: 10.12688/f1000research.50786.1
  71. Akbar M, Essa MM, Daradkeh G, et al. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637: 34-55. doi: 10.1016/j.brainres.2016.02.016 PMID: 26883165
  72. Caspersen C, Wang N, Yao J, et al. Mitochondrial Aβ: A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 2005; 19(14): 2040-1. doi: 10.1096/fj.05-3735fje PMID: 16210396
  73. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 2006; 26(35): 9057-68. doi: 10.1523/JNEUROSCI.1469-06.2006 PMID: 16943564
  74. Findeis MA. The role of amyloid β peptide 42 in Alzheimer’s disease. Pharmacol Ther 2007; 116(2): 266-86. doi: 10.1016/j.pharmthera.2007.06.006 PMID: 17716740
  75. Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol Neurodegener 2020; 15(1): 30. doi: 10.1186/s13024-020-00376-6 PMID: 32471464
  76. John OO, Amarachi IS, Chinazom AP, et al. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmacol Res - Mod Chin Med 2022; 2: 100030. doi: 10.1016/j.prmcm.2021.100030
  77. Wang W, Esbensen Y, Kunke D, et al. Mitochondrial DNA damage level determines neural stem cell differentiation fate. J Neurosci 2011; 31(26): 9746-51. doi: 10.1523/JNEUROSCI.0852-11.2011 PMID: 21715639
  78. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta Mol Cell Res 2011; 1813(7): 1269-78. doi: 10.1016/j.bbamcr.2010.09.019 PMID: 20933024
  79. Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta, Gen Subj 2015; 1850(4): 794-801. doi: 10.1016/j.bbagen.2014.11.021 PMID: 25484314
  80. Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem Soc Trans 2016; 44(6): 1725-35. doi: 10.1042/BST20160129 PMID: 27913683
  81. Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta Mol Cell Res 2009; 1793(10): 1540-70. doi: 10.1016/j.bbamcr.2009.06.001 PMID: 19559056
  82. Mancuso M, Coppedè F, Murri L, Siciliano G. Mitochondrial cascade hypothesis of Alzheimer’s disease: Myth or reality? Antioxid Redox Signal 2007; 9(10): 1631-46. doi: 10.1089/ars.2007.1761 PMID: 17887917
  83. Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid Med Cell Longev 2019; 2019: 1-18. doi: 10.1155/2019/2105607 PMID: 31210837
  84. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017; 2017: 1-11. doi: 10.1155/2017/2525967 PMID: 28785371
  85. Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22. doi: 10.3892/br.2016.630 PMID: 27123241
  86. A. Massaad C. Neuronal and vascular oxidative stress in alzheimers disease. Curr Neuropharmacol 2011; 9(4): 662-73. doi: 10.2174/157015911798376244 PMID: 22654724
  87. Ou Z, Pan J, Tang S, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Health 2021; 9: 776847. doi: 10.3389/fpubh.2021.776847 PMID: 34950630
  88. Stoker TB, Barker RA. Recent developments in the treatment of Parkinson’s disease. F1000Res 2020; 9 F1000 Faculty Rev-862. doi: 10.12688/f1000research.25634.1
  89. Katzenschlager R. Parkinson’s disease: Recent advances. J Neurol 2014; 261(5): 1031-6. doi: 10.1007/s00415-014-7308-9 PMID: 24687891
  90. Wankhede NL, Kale MB, Upaganlawar AB, et al. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed Pharmacother 2022; 147: 112647. doi: 10.1016/j.biopha.2022.112647 PMID: 35149361
  91. Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129(2): 154-69. doi: 10.1111/j.1365-2567.2009.03225.x PMID: 20561356
  92. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40. doi: 10.1016/j.cbi.2005.12.009 PMID: 16430879
  93. Bekris LM, Mata IF, Zabetian CP. The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 2010; 23(4): 228-42. doi: 10.1177/0891988710383572 PMID: 20938043
  94. Upaganlawar A, Upasani C, Kale MB. Medicinal potential of fenugreek in neuropathy and neuroinflammation associated disorders. Fenugreek 2022; pp. 211-29. doi: 10.1201/9781003082767-19
  95. Ruiz A, Alberdi E, Matute C. Mitochondrial division inhibitor 1 (Mdivi-1) protects neurons against excitotoxicity through the modulation of mitochondrial function and intracellular Ca2+ signaling. Front Mol Neurosci 2018; 17: 11-3. doi: 10.3389/fnmol.2018.00003
  96. Liu F, Patterson TA, Sadovova N, et al. Ketamine-induced neuronal damage and altered N-methyl-D-aspartate receptor function in rat primary forebrain culture. Toxicol Sci 2013; 131(2): 548-57. doi: 10.1093/toxsci/kfs296 PMID: 23065140
  97. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999; 22(1): 123-44. doi: 10.1146/annurev.neuro.22.1.123 PMID: 10202534
  98. Fiskum G, Murphy AN, Beal MF. Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 1999; 19(4): 351-69. doi: 10.1097/00004647-199904000-00001 PMID: 10197505
  99. Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26(6): 719-23. doi: 10.1002/ana.410260606 PMID: 2557792
  100. Blin O, Desnuelle C, Rascol O, et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J Neurol Sci 1994; 125(1): 95-101. doi: 10.1016/0022-510X(94)90248-8 PMID: 7964895
  101. Moon HE, Paek SH. Mitochondrial dysfunction in Parkinson’s disease. Exp Neurobiol 2015; 24(2): 103-16. doi: 10.5607/en.2015.24.2.103 PMID: 26113789
  102. Paulsen JS, Magnotta VA, Mikos AE, et al. Brain structure in preclinical Huntington’s disease. Biol Psychiatry 2006; 59(1): 57-63. doi: 10.1016/j.biopsych.2005.06.003 PMID: 16112655
  103. Tabrizi SJ, Langbehn DR, Leavitt BR, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: Cross-sectional analysis of baseline data. Lancet Neurol 2009; 8(9): 791-801. doi: 10.1016/S1474-4422(09)70170-X PMID: 19646924
  104. Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 2017; 7(7): a024240. doi: 10.1101/cshperspect.a024240 PMID: 27940602
  105. Reddy PH, Williams M, Charles V, et al. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet 1998; 20(2): 198-202. doi: 10.1038/2510 PMID: 9771716
  106. Panov AV, Gutekunst CA, Leavitt BR, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 2002; 5(8): 731-6. doi: 10.1038/nn884 PMID: 12089530
  107. Nguyen GD, Gokhan S, Molero AE, Mehler MF. Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis. PLoS One 2013; 8(5): e64368. doi: 10.1371/journal.pone.0064368 PMID: 23691206
  108. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci 2007; 30(1): 575-621. doi: 10.1146/annurev.neuro.29.051605.113042 PMID: 17417937
  109. Liu Y, Hettinger CL, Zhang D, Rezvani K, Wang X, Wang H. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington’s disease. J Neurochem 2014; 129(3): 539-47. doi: 10.1111/jnc.12647 PMID: 24383989
  110. Xiao G, Fan Q, Wang X, Zhou B. Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci USA 2013; 110(37): 14995-5000. doi: 10.1073/pnas.1308535110 PMID: 23980182
  111. Jiang W, Wei W, Gaertig MA, Li S, Li XJ. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model. PLoS One 2015; 10(7): e0134142-. doi: 10.1371/journal.pone.0134142 PMID: 26225560
  112. Bonelli R, Wenning G. Pharmacological management of Huntington’s disease: An evidence-based review. Curr Pharm Des 2006; 12(21): 2701-20. doi: 10.2174/138161206777698693 PMID: 16842168
  113. Bossy-Wetzel E, Petrilli A, Knott AB. Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 2008; 31(12): 609-16. doi: 10.1016/j.tins.2008.09.004 PMID: 18951640
  114. Marcora E, Kennedy MB. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum Mol Genet 2010; 19(22): 4373-84. doi: 10.1093/hmg/ddq358 PMID: 20739295
  115. Votyakova TV, Reynolds IJ. ΔΨm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001; 79(2): 266-77. doi: 10.1046/j.1471-4159.2001.00548.x PMID: 11677254
  116. Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 2008; 14(10): 1097-105. doi: 10.1038/nm.1868 PMID: 18806802
  117. DiFiglia M, Sapp E, Chase K, et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 1995; 14(5): 1075-81. doi: 10.1016/0896-6273(95)90346-1 PMID: 7748555
  118. Kim M, Roh JK, Yoon BW, et al. Huntingtin is degraded to small fragments by calpain after ischemic injury. Exp Neurol 2003; 183(1): 109-15. doi: 10.1016/S0014-4886(03)00132-8 PMID: 12957494
  119. Kegel KB, Meloni AR, Yi Y, et al. Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J Biol Chem 2002; 277(9): 7466-76. doi: 10.1074/jbc.M103946200 PMID: 11739372

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers