Repurposing of Angiotensin-converting-enzyme Inhibitor on Prevention of Post-surgical Tendon Adhesion


Cite item

Full Text

Abstract

Background:Formation of adhesion bands is a frequent clinical complication after tendon injury or surgery with limited treatment options. This study investigates the repurposing of Angiotensin-Converting-Enzyme Inhibitor (ACEI) in attenuating post-operative tendon-sheath adhesion bands in an Achilles tendon rat model.

Methods:Structural, mechanical, histological, and biochemical characteristics of the Achilles tendons were compared in the presence and absence of oral ACEI (enalapril) using the Achilles tendon adhesion (TA) model in rats. Inflammation and total fibrosis of tendon tissues were compared between groups using molecular investigations along with macroscopic and histological scoring methods.

Results:ACEI significantly alleviated the severity, length, and density of Achilles TAs. Moreover, histopathological changes, recruitment of inflammatory cells, and inflammation were significantly decreased in post-operative tissue samples as quantified with the Moran scoring model. We showed that ACEI treatment elicits a potent anti-fibrotic effect on tendon tissue samples, as illustrated by decreasing the severity and extent of the formed fibrotic tissue and collagen accumulation at the site of surgery when scored either by Tang or Ishiyama grading systems. The H&E staining showed no histopathological changes or damage to the principal organs.

Conclusion:Our results showed that ACEI is a safe and effective therapeutic candidate with potent immunomodulatory and anti-fibrotic features to alleviate surgery-induced development of fibrotic adhesive tissue. However, its efficacy needs to be further validated in clinical studies.

About the authors

Hamideh Naimi

Department of Cellular and Molecular Biology,, Islamic Azad University Central Tehran Branch

Email: info@benthamscience.net

Majid Khazaei

Metabolic Syndrome Research Center,, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Fariba Sharifnia

Department of Biology,, Islamic Azad University,

Email: info@benthamscience.net

Sayyed-Hadi Sayyed-Hosseinian

Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences

Email: info@benthamscience.net

References

  1. Meier Bürgisser G, Calcagni M, Bachmann E, et al. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery. Biol Open 2016; 5(9): 1324-33. doi: 10.1242/bio.020644 PMID: 27635037
  2. Wu YF, Tang JB. Apoptosis in adhesions and the adhesion-tendon gliding interface: Relationship to adhesion-tendon gliding mechanics. J Hand Surg Am 2013; 38(6): 1071-8. doi: 10.1016/j.jhsa.2013.03.012 PMID: 23660197
  3. Yan Z, Meng X, Su Y, Chen Y, Zhang L, Xiao J. Double layer composite membrane for preventing tendon adhesion and promoting tendon healing. Mater Sci Eng C 2021; 123: 111941. doi: 10.1016/j.msec.2021.111941 PMID: 33812576
  4. Hsu S, Dai LG, Hung YM, Dai NT. Evaluation and characterization of waterborne biodegradable polyurethane films for the prevention of tendon postoperative adhesion. Int J Nanomed 2018; 13: 5485-97. doi: 10.2147/IJN.S169825 PMID: 30271142
  5. Fatehi Hassanabad A, Zarzycki AN, Jeon K, et al. Prevention of post-operative adhesions: A comprehensive review of present and emerging strategies. Biomolecules 2021; 11(7): 1027. doi: 10.3390/biom11071027 PMID: 34356652
  6. Capella-Monsonís H, Kearns S, Kelly J, Zeugolis DI. Battling adhesions: From understanding to prevention. BMC Biomed Eng 2019; 1(1): 5. doi: 10.1186/s42490-019-0005-0 PMID: 32903353
  7. Levi M, van der Poll T, Büller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109(22): 2698-704. doi: 10.1161/01.CIR.0000131660.51520.9A PMID: 15184294
  8. Chegini N. Peritoneal molecular environment, adhesion formation and clinical implication. Front Biosci 2002; 7: e91-e115. PMID: 11897550
  9. Asgharzadeh F, Nazari SE, Naeimi H, et al. Phytosomal curcumin and shilajit decrease adhesion bands post-Achilles tendon surgery in animal model. Lett Drug Des Discov 2023; 20 doi: 10.2174/1570180820666230823091640
  10. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
  11. Faruqi A, Jain A. Enalapril. St. Petersburg, Florida: StatPearls 2021.
  12. Herman LL, Padala SA, Annamaraju P, Bashir K. Angiotensin converting enzyme inhibitors (ACEI). St. Petersburg, Florida: StatPearls 2021.
  13. Brilla, C.G. Renin-angiotensin-aldosterone system and myocardial fibrosis. Cardiovasc Res 2000; 47: 1-3. doi: 10.1016/S0008-6363(00)00092-4
  14. Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens 2007; 21(1): 20-7. doi: 10.1038/sj.jhh.1002101 PMID: 17096009
  15. Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S. Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 1995; 47(5): 1285-94. doi: 10.1038/ki.1995.183 PMID: 7637258
  16. Kim S, Ohta K, Hamaguchi A, et al. Angiotensin II type I receptor antagonist inhibits the gene expression of transforming growth factor-beta 1 and extracellular matrix in cardiac and vascular tissues of hypertensive rats. J Pharmacol Exp Ther 1995; 273(1): 509-15. PMID: 7714806
  17. Arjmand MH, Zahedi-Avval F, Barneh F, et al. Intraperitoneal administration of telmisartan prevents postsurgical adhesion band formation. J Surg Res 2020; 248: 171-81. doi: 10.1016/j.jss.2019.10.029 PMID: 31923833
  18. Nazari SE, Naimi H, Sayyed-Hosseinian SH, et al. Effect of angiotensin II pathway inhibitors on post-surgical adhesion band formation: A potential repurposing of old drugs. Injury 2022; 53(11): 3642-9. doi: 10.1016/j.injury.2022.08.046 PMID: 36045032
  19. Tang JB, Shi D, Zhang QG. Biomechanical and histologic evaluation of tendon sheath management. J Hand Surg Am 1996; 21(5): 900-8. doi: 10.1016/S0363-5023(96)80212-7 PMID: 8891993
  20. De Cavanagh EMV, Piotrkowski B, Basso N, et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J 2003; 17(9): 1096-8. doi: 10.1096/fj.02-0063fje PMID: 12709417
  21. Andrzejczak D, Górska D, Czarnecka E. Influence of enalapril, quinapril and losartan on lipopolysaccharide (LPS)-induced serum concentrations of TNF-alpha, IL-1 beta, IL-6 in spontaneously hypertensive rats (SHR). Pharmacol Rep 2007; 59(9): 437-46.
  22. Ishiyama N, Moro T, Ishihara K, et al. The prevention of peritendinous adhesions by a phospholipid polymer hydrogel formed in situ by spontaneous intermolecular interactions. Biomaterials 2010; 31(14): 4009-16. doi: 10.1016/j.biomaterials.2010.01.100 PMID: 20149434
  23. Moran SL, Ryan CK, Orlando GS, Pratt CE, Michalko KB. Effects of 5-fluorouracil on flexor tendon repair. J Hand Surg Am 2000; 25(2): 242-51. doi: 10.1053/jhsu.2000.jhsu25a0242 PMID: 10722815
  24. Lee SY, Chieh HF, Lin CJ, et al. Characteristics of sonography in a rat achilles tendinopathy model: Possible non-invasive predictors of biomechanics. Sci Rep 2017; 7(1): 5100. doi: 10.1038/s41598-017-05466-y PMID: 28698601
  25. Jung H-J, Fisher MB, Woo SL. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. Sports Med Arthrosc Rehabil Ther Technol 2009; 1(1): 9. PMID: 19457264
  26. Nakamura T, Takahashi T, Fukui M, et al. Enalapril attenuates increased gene expression of extracellular matrix components in diabetic rats. J Am Soc Nephrol 1995; 5(7): 1492-7. doi: 10.1681/ASN.V571492 PMID: 7703388
  27. El Chaar M, Chen J, Seshan SV, et al. Effect of combination therapy with enalapril and the TGF-β antagonist 1D11 in unilateral ureteral obstruction. Am J Physiol Renal Physiol 2007; 292(4): F1291-301. doi: 10.1152/ajprenal.00327.2005 PMID: 17164399
  28. Ding L, Liu D, Xu M, et al. Enalapril inhibits tubulointerstitial inflammation and NLRP3 inflammasome expression in BSA-overload nephropathy of rats. Acta Pharmacol Sin 2014; 35(10): 1293-301. doi: 10.1038/aps.2014.66 PMID: 25152022
  29. Ghosh SS, Krieg R, Massey HD, et al. Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in % nephrectomized rats: Role of phospholipase and cyclooxygenase. Am J Physiol Renal Physiol 2012; 302(4): F439-54. doi: 10.1152/ajprenal.00356.2010 PMID: 22031851
  30. Nikbakht F, Najafipour H, Dabiri SH. The effect of enalapril on inflammation and IL-1β and IL-8 production in chronic arthritis. Daru 2007; 2007: 6.
  31. Karimian G, Mohammadi-Karakani A, Sotoudeh M, Ghazi-Khansari M, Ghobadi G, Shakiba B. Attenuation of hepatic fibrosis through captopril and enalapril in the livers of bile duct ligated rats. Biomed Pharmacother 2008; 62(5): 312-6. doi: 10.1016/j.biopha.2007.10.020 PMID: 18191530
  32. Pahor M. Enalapril prevents cardiac fibrosis and arrhythmias in hypertensive rats. Hypertension 1991; 18(2): 148-57. doi: 10.1161/01.HYP.18.2.148
  33. Ghazi-Khansari M, Mohammadi-Karakani A, Sotoudeh M, Mokhtary P, Pour-Esmaeil E, Maghsoud S. Antifibrotic effect of captopril and enalapril on paraquat-induced lung fibrosis in rats. J Appl Toxicol 2007; 27(4): 342-9. doi: 10.1002/jat.1212 PMID: 17265423

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers