Revolutionizing Drug Discovery: The Role of Artificial Intelligence and Machine Learning


Cite item

Full Text

About the authors

Abhishek Verma

Department of Pharmaceutics, ISF College of Pharmacy,

Email: info@benthamscience.net

Ankit Awasthi

Department of Pharmaceutics, ISF College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

References

  1. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol Divers 2021; 25(3): 1315-60. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
  2. Vemula D, Jayasurya P, Sushmitha V, Kumar YN, Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur J Pharm Sci 2023; 181: 106324. doi: 10.1016/j.ejps.2022.106324 PMID: 36347444
  3. Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 2021; 41(3): 1427-73. doi: 10.1002/med.21764 PMID: 33295676
  4. Alshehri FF. Integrated virtual screening, molecular modeling and machine learning approaches revealed potential natural inhibitors for epilepsy. Saudi Pharm J 2023; 31(12): 101835. doi: 10.1016/j.jsps.2023.101835 PMID: 37965486
  5. Tropsha A, Isayev O, Varnek A, Schneider G, Cherkasov A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat Rev Drug Discov 2024; 23(2): 141-55. PMID: 38066301
  6. Husnain A, Rasool S, Saeed A, Hussain HK. Revolutionizing pharmaceutical research: Harnessing machine learning for a paradigm shift in drug discovery. Int J Multidiscip Sci Arts 2023; 2(2): 149-57. doi: 10.47709/ijmdsa.v2i2.2897
  7. Ayanoglu E, Davaslioglu K, Sagduyu YE. Machine learning in NextG networks via generative adversarial networks. IEEE Trans Cogn Commun Netw 2022; 8(2): 480-501. doi: 10.1109/TCCN.2022.3153004
  8. Doherty T, Yao Z, Khleifat AA, et al. Artificial intelligence for dementia drug discovery and trials optimization. Alzheimers Dement 2023; 19(12): 5922-33. doi: 10.1002/alz.13428 PMID: 37587767
  9. Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Application of artificial intelligence in drug repurposing: A mini-review. Curr Chin Sci 2021; 1(3): 333-45. doi: 10.2174/2210298101666210204162006
  10. Hoseini B, Jaafari MR, Golabpour A, Momtazi-Borojeni AA, Karimi M, Eslami S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci Rep 2023; 13(1): 18012. doi: 10.1038/s41598-023-43689-4 PMID: 37865639
  11. Hoseini B, Jaafari MR, Golabpour A, Momtazi-Borojeni AA, Eslami S. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning. Int J Pharm 2023; 646: 123414. doi: 10.1016/j.ijpharm.2023.123414 PMID: 37714314
  12. Kaluarachchi T, Reis A, Nanayakkara S. A review of recent deep learning approaches in human-centered machine learning. Sensors 2021; 21(7): 2514. doi: 10.3390/s21072514 PMID: 33916850
  13. Alonso JM, Casalino G. Explainable artificial intelligence for human-centric data analysis in virtual learning environments. In: Higher Education Learning Methodologies and Technologies Online. Springer 2019; pp. 125-38. doi: 10.1007/978-3-030-31284-8_10
  14. Kulkov I. The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technol Soc 2021; 66: 101629. doi: 10.1016/j.techsoc.2021.101629
  15. You Y, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct Target Ther 2022; 7(1): 156. doi: 10.1038/s41392-022-00994-0 PMID: 35538061
  16. Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT. Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 2016; 14: 177-84. doi: 10.1016/j.csbj.2016.04.004 PMID: 27293534
  17. Sunil VS. The intersection of artificial intelligence and biological sciences
  18. Greene D, Hoffmann AL, Stark L. Better, nicer, clearer, fairer: A critical assessment of the movement for ethical artificial intelligence and machine learning. Hawaii International Conference on System Sciences Hawai, January. 2019; pp. 1-10. doi: 10.24251/HICSS.2019.258
  19. Neethirajan S. Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Human-Centric Intelligent Systems 2023; pp. 1-16.
  20. Xu Y, Yao H, Lin K. An overview of neural networks for drug discovery and the inputs used. Expert Opin Drug Discov 2018; 13(12): 1091-102. doi: 10.1080/17460441.2018.1547278 PMID: 30449189
  21. Hafidi MM, Djezzar M, Hemam M, Amara FZ, Maimour M. Semantic web and machine learning techniques addressing semantic interoperability in Industry 4.0. Int J Web Inf Syst 2023; 19(3/4): 157-72. doi: 10.1108/IJWIS-03-2023-0046
  22. Blanco-González A, Cabezón A, Seco-González A, et al. The role of ai in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals 2023; 16(6): 891. doi: 10.3390/ph16060891 PMID: 37375838
  23. Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries. Mol Divers 2022; 26(3): 1893-913. doi: 10.1007/s11030-021-10326-z PMID: 34686947
  24. Tiwari PC, Pal R, Chaudhary MJ, Nath R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Dev Res 2023; 84(8): 1652-63. doi: 10.1002/ddr.22115 PMID: 37712494

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers