Study of radiation resistance of optical properties of ZRO2 micropowder modified with MGO nanoparticles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of the study on the radiation resistance of optical properties of ZrO2 micropowder modified with MgO nanoparticles after electron irradiation (E = 30 keV, Φ = 2 × 1016 cm–2) are presented. It has been found that modification with MgO nanoparticles does not lead to the formation of new types of radiation defects; however, the number of formed radiation defects decreases with an increase in MgO content. When modified, radiation resistance increases by 1.7 times compared to unmodified samples.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Mikhailov

Tomsk State University of Control Systems and Radioelectronics

Хат алмасуға жауапты Автор.
Email: membrana2010@mail.ru
Ресей, Tomsk

D. Fedosov

Tomsk State University of Control Systems and Radioelectronics

Email: phedosov99@gmail.com
Ресей, Tomsk

V. Goronchko

Tomsk State University of Control Systems and Radioelectronics

Email: membrana2010@mail.ru
Ресей, Tomsk

A. Lapin

Tomsk State University of Control Systems and Radioelectronics

Email: membrana2010@mail.ru
Ресей, Tomsk

S. Yuryev

Tomsk State University of Control Systems and Radioelectronics

Email: membrana2010@mail.ru
Ресей, Tomsk

Әдебиет тізімі

  1. Jing P., Liu M., Wang P., Yang J., Tang M., He C., LiuM. // Chem. Eng. J. 2020. V. 388. P. 124259. https://doi.org/10.1016/j.cej.2020.124259
  2. Bhamare V.S., Kulkarni R.M. // Advanced Ceramic Coatings. Elsevier, 2023. P. 157. https://doi.org/10.1016/B978-0-323-99659-4.00008-5
  3. Romaniv O.M., Zalite I.V., Simin’kovych V.M., Tkach O.N., Vasyliv B.D. // Mater. Sci. 1996. V. 31. № 5. P. 588. https://doi.org/10.1007/BF00558793
  4. Atkinson I., Mocioiu O.C., Anghel E.M. // Boletín de la Sociedad Española de Cerámica y Vidrio. 2022. V. 61. № 6. P. 677. https://doi.org/10.1016/j.bsecv.2021.07.002
  5. Song X., Ding Y., Zhang J., Jiang C., Liu Z., Lin C., Zeng Y. // J. Mater. Res. Technol. 2023. V. 23. P. 648. https://doi.org/10.1016/j.jmrt.2023.01.040
  6. Lee S., Zhang W., Khatkhatay F., Wang H., Jia Q., MacManus-Driscoll J.L. // Nano Lett. 2015. V. 15. № 11. P. 7362. https://doi.org/10.1021/acs.nanolett.5b02726
  7. Xu H.M., Jing M.X., Li J., Huang Z.H., Wang T.F., Yuan W.Y., Shen X.Q. // ACS Sustain. Chem. Eng. 2021. V. 9. № 33. P. 11118. https://doi.org/10.1021/acssuschemeng.1c02886
  8. Михайлов М.М., Юрьев С.А., Лапин А.Н., Горончко В.А., Утебеков Т.А. // Изв. вузов. Физика. 2023. Т. 66. № 6. С. 2023. https://doi.org/10.17223/00213411/66/6/15
  9. Mikhailov M.M., Neshchimenko V.V., Li C. // Dyes and Pigments. 2016. V. 131. P. 256. https://doi.org/10.1016/j.dyepig.2016.04.012
  10. Li C., Neshchimenko V.V., Mikhailov M.M. // Int. J. Chem., Nucl., Metall. Mater. Eng. 2014. V. 8. P. 342. https://doi.org/10.1016/j.nimb.2014.04.014
  11. Kositsyn L.G., Duoretskii M.I., Kuznetsov N.Y., Mikhailov M.M. // Instrum. Experim. Tech. 1985. V. 28. № 4. P. 929.
  12. ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. 2019.
  13. ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. 2005.
  14. Lee T., Selloni A. // J. Phys. Chem. C. 2023. V. 127. № 28. P. 13936. https://doi.org/10.1021/acs.jpcc.3c02833
  15. Feng S., Zhao J., Liang X., Li H., Wang C. // Mol. Catal. 2023. V. 544. P. 113205. https://doi.org/10.1016/j.mcat.2023.113205
  16. Mikhailov M.M., Dvoretskii M.I. // Soviet Phys. J. 1988. V. 31. P. 591.
  17. Kuznetsov V.N., Serpone N. // J. Phys. Chem. 2009. V. 113. P. 15110. https://doi.org/10.1021/jp901034t
  18. Zheng J.X., Ceder G., Maxisch T., Chim W.K., Choi W.K. // Phys. Rev. B. 2007. V. 75. P. 104112. https://doi.org/10.1103/PhysRevB.75.104112
  19. Полежаев Ю.М., Кортов В.С., Мишкевич М.В. // Изв. АН СССР. Неорган. материалы. 1975. T. 11. № 3. C. 486.
  20. Михайлов М.М., Дворецкий М.И., Кузнецов Н.Я. // Изв. АН СССР. Неорган. материалы. 1984. T. 20. № 3. C. 449.
  21. Foster A.S., Sulimov V.B., Gejo Lopez F. // Phys. Rev. B. 2001. V. 64. P. 224108. https://doi.org/10.1103/PhysRevB.64.224108

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffuse reflectance spectra of the original (1) and modified ZrO2 powder containing nMgO nanoparticles: 0.1 (2); 1 (3); 3 (4); 5 (5); 10 (6) wt. % before electron irradiation.

Жүктеу (115KB)
3. Fig. 2. Diffuse reflectance spectra of the original (1) and modified ZrO2 powder containing nMgO nanoparticles: 0.1 (2); 1 (3); 3 (4); 5 (5); 10 (6) wt. % after irradiation with accelerated electrons with an energy of 30 keV and a fluence of 2 × 1016 cm–2.

Жүктеу (122KB)
4. Fig. 3. Difference spectra of diffuse reflectance of the initial (1) and modified ZrO2 powder containing nMgO nanoparticles: 0.1 (2); 1 (3); 3 (4); 5 (5); 10 (6) wt. % after irradiation with accelerated electrons with an energy of 30 keV and a fluence of 2 × 1016 cm–2.

Жүктеу (102KB)
5. Fig. 4. Decomposition of the ∆ρλ spectra into elementary components after irradiation of ZrO2 micropowder.

Жүктеу (118KB)

© Russian Academy of Sciences, 2025