Fluke worm Azygia lucii and pike Esox lucius: features of the relationship

封面

如何引用文章

全文:

详细

The effect of Azygia lucii fluke infection on the activity of proteolytic enzymes functioning in the stomach of the host pike and the ability of worms to suppress this activity was studied. The activity of a wide range of proteases was detected in the pike’s stomach. In extracts of marita A. lucii, both pepsin-like activity and activity of alkaline proteases, a significant part of which are metal-dependent proteases, were determined. Even with a low intensity of invasion, trematodes cause an increase in the activity of pepsin-like proteases in the host’s stomach. Worm extract suppresses the activity of commercial pepsin, but neither the incubation medium nor the trematode extract have a statistically significant inhibitory effect on the activity of pepsin-like proteases of the gastric mucosa of pike.

全文:

受限制的访问

作者简介

T. Frolova

Papanin Institute for Biology of Inland Waters

编辑信件的主要联系方式.
Email: bianka28061981@gmail.com
俄罗斯联邦, Borok, Yaroslavl Region, 152742

A. Sokolova

Papanin Institute for Biology of Inland Waters

Email: bianka28061981@gmail.com
俄罗斯联邦, Borok, Yaroslavl Region, 152742

G. Izvekova

Papanin Institute for Biology of Inland Waters

Email: bianka28061981@gmail.com
俄罗斯联邦, Borok, Yaroslavl Region, 152742

参考

  1. Высоцкая Р. У., Немова Н. Н. Лизосомы и лизосомальные ферменты рыб. М.: Наука, 2008. 284 с.
  2. Добровольский А. А., Евланов И. А., Шульман С. С. Паразитарные системы: анализ структуры и стратегии, определяющих их устойчивость / Экологическая паразитология [Ред. С. С. Шульман]. Петрозаводск: КНЦ РАН, 1994. 198 с.
  3. Жохов А. Е., Пугачева М. Н. Факторы, влияющие на распределение Azygia lucii в популяции дефинитивного хозяина // Биология внутренних вод. 2023. № 1. С. 115–124. https://doi.org/10.31857/S0320965223010205
  4. Номенклатура ферментов / Под ред. Браунштейна А. Е. М.: ВИНИТИ, 1979. 324 с.
  5. Сопрунов Ф. Ф. Молекулярные основы паразитизма. М.: Наука, 1987. 224 с.
  6. Alarcon F. J., Martínez T. F., Barranco P., Cabello T., Díaz M., Moyano F. J. Digestive proteases during development of larvae of red palm weevil, Rhynchophorus errugineus (Olivier, 1790) (Coleoptera: Curculionidae) // Insect Biochem. Mol. Biol. 2002. V. 32. P. 265–274. https://doi.org/10.1016/S0965-1748(01)00087-X
  7. Bos D. H., Mayfield C., Minchella D. J. Analysis of regulatory protease sequences identified through bioinformatic data mining of the Schistosoma mansoni genome // BMC Genomics. 2009. № 10:488. https://doi.org/10.1186/1471-2164-10-488
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Caffrey C. R., Goupil L., Rebello K. M., Dalton J. P., Smith D. Cysteine proteases as digestive enzymes in parasitic helminthes // PLoS Negl. Trop. Dis. 2018. V. 12(8):e0005840. https://doi.org/10.1371/journal.pntd.0005840
  10. Cwiklinski K., Dalton J. P. Advances in Fasciola hepatica research using ‘omics’ technologies // Int. J. Parasitol. 2018. V. 48. P. 321–331. https://doi.org/10.1016/j.ijpara.2017.12.001
  11. Dalton J. P., Skelly P., Halton D. W. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths1 // Can. J. Zool. 2004. V. 82. P. 211–232. https://doi.org/10.1139/z03-213
  12. Delcroix M., Sajid M., Caffrey C. R., Lim K.-C., Dvorak J., Hsieh I., Bahgat M., Dissous C., McKerrow J.H. A Multienzyme Network Functions in Intestinal Protein Digestion by a Platyhelminth Parasite // J. Biol. Chem. 2006. V. 281. № 51. P. 39316–39329. https://doi.org/10.1074/jbc.M607128200
  13. Dvorak J., Horn M. Serine proteases in schistosomes and other trematodes // Int. J. Parasitol. 2018. V. 48. P. 333–344. https://doi.org/10.1016/j.ijpara.2018.01.001
  14. Izvekova G. I., Solovyev M. M. Activity of Digestive Hydrolases in Fish Infected with Cestodes // Biol. Bull. Rev. 2013. V. 3. № 2. P. 167–175. https://doi.org/10.1134/S2079086413020047
  15. Izvekova G. I., Solovyev M. M. The activity of digestive enzymes of the pike Esox lucius L. infected with the cestode Triaenophorus nodulosus (Pallas) // Inland Water Biol. 2012. V. 5. № 1. P. 113–118. https://doi.org/10.1134/S1995082911040080
  16. Izvekova G. I., Solovyov M. M., Izvekov E. I. Effect of Caryophyllaeus laticeps (Cestoda, Caryophyllidea) upon Activity of Digestive Enzymes in Bream // Biol. Bull. 2011. V. 38, № 1. P. 50–56. https://doi.org/10.1134/S1062359011010055
  17. Fernández-Delgado M., Cortez J., Sulbarán G., Matos C., Incani R. N., Ballén D. E., Cesari I. M. Differential distribution and biochemical characteristics of hydrolases among developmental stages of Schistosoma mansoni may offer new anti-parasite targets // Parasitol. Int. 2017. V. 66. P. 816–820. https://doi.org/10.1016/j.parint.2016.09.015
  18. Kashinskaya E. N., Simonov E. P., Izvekova G. I., Baturina O. A., Solovyev M. M. Variability of Composition of Microbiota of Gastrointestinal Tract of Perch Perca fluviatilis and Prussian Carp Carassius gibelio During the Vegetative Season // J. Ichthyology. 2021. V. 61. № 6. P. 955–971. https://doi.org/10.1134/s0032945221060060
  19. Kashinskaya E. N., Simonov E. P., Poddubnaya L. G., Vlasenko P. G., Shokurova A. V., Parshukov A. N., Andree K. B., Solovyev M. M. Trophic diversification and parasitic invasion as ecological niche modulators for gut microbiota of whitefish // Front. Microbiol. 2023. V. 14:1090899. https://doi.org/10.3389/fmicb.2023.1090899
  20. Kolyaskin L. Yu., Shibeko A. M. The Role of Metalloproteinases in the Development of Ischemia-Induced Pathologies of the Blood–Brain Barrier // J. Evol. Biochem. Physiol. 2024. V. 60. № 1. P. 228–246. https://doi.org/10.31857/S0869813924010021
  21. Michaud D. Gel electrophoresis of proteolytic enzymes // Anal. Chim. Acta. 1998. № 372. P. 173–185.https://doi.org/10.1016/s0003-2670(98)00349-3
  22. Nolasco-Soria H. Improving and standardizing protocols for alkaline protease quantification in fish // Reviews in Aquaculture. 2021. V. 13. P. 43–65.https://doi.org/10.1111/raq.12463
  23. Pearson M. S., Ranjit N., Loukas A. Blunting the knife: development of vaccines targeting digestive proteases of blood-feeding helminth parasites // Biol. Chem. 2010. V. 391. P. 901–911.https://doi.org/10.1515/BC.2010.074
  24. Ranasinghe S. L., McManus D. P. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence // Trends in Parasitol. 2017. V. 33. № 5. P. 400–413. https://doi.org/10.1016/j.pt.2016.12.013
  25. Rawlings N. D., Barrett A. J. Evolutionary families of peptidases // Biochem. J. 1993. V. 290. P. 205–218. https://doi.org/10.1042/bj2900205
  26. Smith D., Cwiklinski K., Jewhurst H., Tikhonova I. G., Dalton J. P. An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite Fasciola hepatica // Sci. Rep. 2020. № 10. P. 20657. https://doi.org/10.1038/s41598-020-77687-7
  27. Vainutis K. S., Voronova A. N., Mironovsky A. N., Zhigileva O. N., Zhokhov A. E. The Species Diversity Assessment of Azygia Looss, 1899 (Digenea: Azygiidae) from the Volga, Ob, and Artyomovka Rivers Basins (Russia), with Description of A. sibirica n. sp. // Diversity. 2023. V. 15. № 1. P. 119. https://doi.org/10.3390/d15010119
  28. Worthington Biochemical Corporation. Worthington enzyme manual: Enzymes. Enzyme Reagents. 1991. 346 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Inhibitory analysis of proteases from Azygia lucii marit, n = 5.

下载 (24KB)
3. Fig. 2. Pepsin-like activity of the gastric mucosa of uninfected (I), infected (II) pikes and the extract of the trematode Azygia lucii (III), n = 5. * indicates the reliability of the difference between infected pikes relative to uninfected ones.

下载 (32KB)
4. Fig. 3. Effect of pH of the medium on the total proteolytic activity of the gastric mucosa of pike, n = 5.

下载 (2KB)
5. Fig. 4. Inhibitory analysis of proteases functioning in the gastric mucosa of pike, n = 5.

下载 (24KB)
6. Fig. 5. The effect of the incubation medium and the extract of Azygia lucii on the activity of pepsin (a) and the pepsin-like activity of the gastric mucosa of pike (b), n = 5. * indicates the reliability of the difference of the extract relative to the control.

下载 (66KB)

版权所有 © Russian Academy of Sciences, 2025