METHOD OF TEMPERATURE CORRELATIONS FOR ESTIMATING THE LARGE-SCALE CIRCULATION RATE IN THE CASE OF TURBULENT CONVECTION OF LIQUID METALS IN AN INCLINED CYLINDER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The potentials of the method of temperature correlations in determining the mean velocities of liquid metal turbulent flows are investigated. The method uses the signals from temperature transducers arranged in line in the direction of large-scale circulation motion. As distinct from other, more conventional techniques, this indirect method can be used in the measurements in melt metals, which represent aggressive opaque media. The method is based on the Taylor hypothesis of the temperature disturbance field freezing in the velocity field on a certain level of flow turbulence. By fixing the passage of such disturbances through temperature transducers it is possible to calculate the flow velocity. The flow in the actual setups is usually inhomogeneous and developed turbulence arises only locally in the cavity. For this reason, though the method is absolute and does not need calibration, its applicability should to be verified in each particular case. In this study the method is applied to the problem of turbulent convection of liquid sodium (Prandtl number Pr = 0.0083) in a cylinder, whose length is greater than its diameter by the factor of 5, heated from one end and cooled from the other end. In the flow regimes considered the cylinder is inclined to the vertical line by an angle β, 18∘ ⩽ β ⩽ 90∘. The Rayleigh number based on the cylinder diameter was 5 · 106. An analysis of the data of experimental investigations and three-dimensional numerical calculations is performed. In the latter case the flow velocity is known for a fact and can be directly compared with the estimates obtained using the crosscorrelation analysis. It is shown that the method of temperature correlations not always allows one to adequately estimate the mean velocities of regular large-scale sodium flows, that is, has its own restrictions. The method performs well in the conditions of moderate turbulent fluctuations of the temperature and velocity. The greatest error of the method takes place near the heat exchangers in the flow direction: a demonstrative explanation of the reasons for this error is proposed with reference to this example. The nonlinear dependence of the large-scale circulation amplitude on the angle of inclination of the cylinder is obtained; it has a maximum near 45∘. The location of the maximum of this dependence is different from that for the cylinder with the aspect ratio 20 (60∘–70∘).

About the authors

A. D. Mamykin

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Email: mad@icmm.ru
Perm, Russia

References

  1. Ahlers G., Grossmann S., Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection // Rev. of Mod. Phys. 2009. V. 81. № 2. P. 503–537. http://dx.doi.org/10.1103/revmodphys.81.503
  2. Chilla F., Schumacher J. New perspectives in turbulent Rayleigh-Benard convection // J. Eur. Phys. J. E. 2012. V. 35. № 7. P. 58. http://dx.doi.org/10.1103/revmodphys.81.503
  3. Васильев А.Ю., Сухановский А.Н., Фрик П.Г. Структура и динамика крупномасштабной циркуляции в турбулентной конвекции при высоких числах Прандтля // Изв. РАН. МЖГ. 2020. № 6. С. 42–49. http://dx.doi.org/10.31857/S0568528120060134
  4. Kolesnichenko I., Khalilov R., Teimurazov A., Frick P. On boundary conditions in liquid sodium convective experiments // J. Phys.: Conf. Ser. 2017. V. 891. № 1. P. 012075. http://dx.doi.org/10.1088/1742-6596/891/1/012075
  5. Khalilov R., Kolesnichenko I., Pavlinov A., Mamykin A., Shestakov A., Frick P. Thermal convection of liquid sodium in inclined cylinders // Phys. Rev. Fluids. 2018. V. 3. № 4. P. 043503. http://dx.doi.org/10.1103/PhysRevFluids.3.043503
  6. Schumacher J., Gotzfried P., Scheel J.D. Enhanced endstrophy generation for turbulent convection in low-Prandtlnumber fluids // App. Phys. Sciences. 2015. V. 112. № 31. P. 9530–9535. https://doi.org/10.1073/pnas.1505111112
  7. Scheel J.D., Schumacher J. Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows // Phys. Rev. Fluids. 2017. V. 2. № 12. P. 123501. http://dx.doi.org/10.1103/physrevfluids.2.123501
  8. Teimurazov A., Frick P. Thermal convection of liquid metal in a long inclined cylinder // Phys. Rev. Fluids. 2017. V. 2. № 11. P. 113501. https://doi.org/10.1103/physrevfluids.2.113501
  9. Cioni S., Ciliberto S., Sommeria J. Strongly turbulent Rayleigh-Benard convection in mercury: comparison with results at moderate Prandtl number // J. Fluid Mech. 1997. V. 335. P. 111–140. https://doi.org/10.1017/S0022112096004491
  10. Takeshita T., Segawa T., Glazier J. A., Sano M. Thermal Turbulence in Mercury // Phys. Rev. Lett. 1997. V. 76. P. 1465–1468. https://doi.org/10.1103/PhysRevLett.76.1465
  11. Frick P., Khalilov R., Kolesnichenko I., Mamykin A., Pakholkov V., Pavlinov A., Rogozhkin S. Turbulent convective heat transfer in a long cylinder with liquid sodium // Europhys. Lett. 2015. V. 109. № 1. P. 14002. http://dx.doi.org/10.1209/0295-5075/109/14002
  12. Vasil’ev A.Y., Kolesnichenko I.V., Mamykin A.D., Frick P.G., Khalilov R.I., Rogozhkin S.A., Pakholkov V.V. Turbulent convective heat transfer in an inclined tube filled with sodium // Tech. Phys. 2015. V. 60. № 9. P. 1305–1309. http://dx.doi.org/10.1134/s1063784215090236
  13. Zwirner L., Khalilov R., Kolesnichenko I., Mamykin A., Mandrykin S., Pavlinov A., Shestakov A., Teimurazov A., Frick P., Shishkina O. The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection // J. Fluid Mech. 2020. V. 884. P. A18. https://doi.org/10.1017/jfm.2019.935
  14. Kolesnichenko I.V., Mamykin A.D., Pavlinov A.M., Pakholkov V.V., Rogozhkin S.A., Frick P.G., Khalilov R.I., Shepelev S.F. Experimental study on free convection of sodium in a long cylinder // Therm. Eng. 2015. V. 62. № 6. P. 414–422. http://dx.doi.org/10.1134/s0040601515060026
  15. Shishkina O., Horn S. Thermal convection in inclined cylindrical containers // J. Fluid Mech. 2016. V. 790. P. R3. http://dx.doi.org/10.1017/jfm.2016.55
  16. Zwirner L., Shishkina O. Confined inclined thermal convection in low-Prandtl-number fluids // J. Fluid Mech. 2018. V. 850. P. 984–1008. http://dx.doi.org/10.1017/jfm.2018.477
  17. Мандрыкин С. Д., Теймуразов А. С. Турбулентная конвекция жидкого натрия в наклонном цилиндре с единичным аспектным отношением // Выч. мех. сплошных сред. 2018. Т. 11. № 4. С. 417–428. http://dx.doi.org/10.7242/1999-6691/2018.11.4.32
  18. Taylor G. The spectrum of turbulence // Proc. R. Soc. 1938. V. A164. P. 476–490. https://doi.org/10.1098/rspa.1938.0032
  19. Кириллов П.Л., Денискина Н.Б. Теплофизические свойства жидкометаллических теплоносителей. ЦНИИАтоминформ, 2000. 42 с.
  20. Deardorff J.W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers // J. Fluid Mech. 1970. V. 41. P. 453–480. http://dx.doi.org/10.1017/S0022112070000691
  21. Weller H.G., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using objectoriented techniques // Comput. Phys. 1998. V. 12. P. 620–631. http://dx.doi.org/10.1063/1.168744
  22. Chilla` F., Rastello M., Chaumat S., Castaing B. Long relaxation times and tilt sensitivity in Rayleigh-Benard turbulence // Eur. Phys. J. 2004. B 40 (2). P. 223–227. https://doi.org/10.1140/epjb/e2004-00261-3
  23. Kolesnichenko I., Mamykin A., Golbraikh E., Pavlinov A. Application of the temperature correlation method to measuring the flow rate of liquid sodium // Magnetohydrodynamics. 2021. V. 54. №4. P. 547–557. http://dx.doi.org/10.22364/mhd.57.4.9
  24. Mamykin A.D., Khalilov R.I., Golbraikh E., Kolesnichenko I.V. Based on the temperature correlation principle, the use of a magnetic obstacle to generate pulsations in the flow measurement of a liquid metal coolant // Diagn. resour. mech. mater. struct. 2023. Iss. 3. P. 17–28. http://dx.doi.org/10.17804/2410-9908.2023.3.017-028

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences