Turbulent Swirled Wall Jets

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Numerical simulation is applied to investigate the outflow of an incompressible three-dimensional turbulent swirled wall jet. The purpose of the study is to determine the jet flow structure and to compare the characteristics of swirled and nonswirled jets. The numerical solution of the equations of motion is obtained using large eddy simulation with wall resolution (WRLES). The results of the modeling are compared with the data of a unique published study devoted to experimental investigation of swirled wall jets.

作者简介

A. Gaifullin

Zhukovski Central Aerohydrodynamic Institute (TsAGI)

编辑信件的主要联系方式.
Email: gaifullin@tsagi.ru
俄罗斯联邦, Zhukovski, Moscow Region, 140180

A. Shcheglov

Zhukovski Central Aerohydrodynamic Institute (TsAGI)

Email: shcheglov@phystech.edu
俄罗斯联邦, Zhukovski, Moscow Region, 140180

参考

  1. Wygnanski I., Katz Y., Horev E. On the applicability of various scaling laws to the turbulent wall jet // J. Fluid Mech. 1992. V. 234. P. 669–690.
  2. Schneider M.E., Goldstein R.J. Laser Doppler measurement of turbulence parameters in a two-dimensional plane wall jet // Phys. Fluids. 1994. V. 6. P. 3116–3129.
  3. Eriksson J., Karlsson R., Persson J. An experimental study of a two-dimensional plane turbulent wall jet // Exp. Fluids. 1998. V. 25. P. 50–60.
  4. Eriksson J. Experimental studies of the plane turbulent wall jet: PhD thesis / Eriksson J. – Stockholm, Sweden: Royal Institute of Technology. Department of Mechanics. 2003. 42 P.
  5. Sun H., Ewing D. Effect of initial and boundary conditions on development of three-dimensional wall jets // 40th AIAA ASME. 2002. P. 733.
  6. Agelin-Chaab M., Tachie M.F. Characteristics of turbulent three-dimensional wall jets // ASME. J. Fluids Eng. 2011. V. 133. № 2.
  7. Namgyal L., Hall, J. Reynolds stress distribution and turbulence generated secondary flow in the turbulent three-dimensional wall jet // J. Fluid Mech. 2016. V. 800. P. 613–644.
  8. Inoue Y., Yano H., Yamashita S. Experimental study on a three-dimensional wall jet // JFST. 2007. V. 2. № 3. P. 655–664.
  9. Hall J.W., Ewing D. Three-dimensional turbulent wall jets issuing from moderate-aspect-ratio rectangular channels // AIAA J. 2007. V. 45. P. 1177–1186.
  10. Newman B., Patel R., Savage S., Tjio H. three-dimensional wall jet originating from a circular orifice // AEQ. 1972. V. 23. № 3. P. 188–200.
  11. Matsuda H., Iida S., Hayakawa M. Coherent structures in a three-dimensional wall jet // ASME. J. Fluids Eng. 1990. V. 112. № 4. P. 462–467.
  12. Padmanabham G., Lakshmana Gowda B.H. Mean and turbulence characteristics of a class of three-dimensional wall jets – Part 1: Mean flow characteristics // ASME. J. Fluids Eng. 1991. V. 113. № 4. P. 620–628.
  13. Pani B.S., Rajaratnam N. Swirling Circular Turbulent Wall Jets // JHR. 1976. V. 14. № 2. P. 145–154.
  14. Craft T., Launder B. On the spreading mechanism of the three-dimensional turbulent wall jet // J. Fluid Mech. 2001. V. 435. P. 305–326.
  15. Khosronejad A., Rennie C.D. Three-dimensional numerical modeling of unconfined and confined wall-jet flow with two different turbulence models // Can. J. Civ. Eng. 2010. V. 37. № 4. P. 576–587.
  16. Kakka P., Anupindi K. Flow and thermal characteristics of three-dimensional turbulent wall jet // Phys. Fluids. 2021. V. 33. № 2.
  17. Гайфуллин А.М., Щеглов А.С. Структура течения в трехмерной пристенной турбулентной струе // ПММ. 2023. № 2. С. 226–239.
  18. Бут И.И., Гайфуллин А.М., Жвик В.В. Дальнее поле трехмерной пристенной ламинарной струи // Изв. РАН. МЖГ. 2021. № 6. С. 51–61.
  19. Гайфуллин А.М., Щеглов А.С. Пристенные ламинарные закрученные струи // Известия РАН. МЖГ. 2023. № 6. С. 67–74.
  20. Sagaut P. Large Eddy Simulation for Incompressible Flows: An Introduction. – Springer, 2006.
  21. Toward the large-eddy simulation of compressible turbulent flows / G. Erlebacher [et al.] // Journal of Fluid Mechanics. 1992. V. 238. P. 155–185.
  22. Nicoud F., Ducros F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor // Flow, Turbulence and Combustion. 1999. V. 62. P. 183–200.
  23. Van Doormaal J.P., Raithby G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flows // Numerical Heat Transfer. 1984. V. 7. N. 2. P. 147–163.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024