Влияние толщины активного слоя из углеродной сажи на характеристики комбинированных электродов в составе ячейки ванадиевой проточной батареи

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of vanadium flow batteries requires the development of new materials to improve their performance. To date, research on electrode materials for these storage devices is focused on increasing specific power and energy efficiency. As is known, energy efficiency can be increased by reducing the polarization of the electrodes due to losses in the transport of charge carrier ions between half-elements, and this can be achieved if an electrochemically active layer is located directly near the surface of the membrane. In this paper, we propose the use of two-layer composite electrodes for this purpose, where the active layer will be located directly at the electrode/membrane boundary. When using CH210 soot with PVDF binder as an active layer at a coating density of 20 mg/cm2, the energy efficiency remains at 79.6% at a current density of 150 mA/cm2, however, an increase in the thickness of the applied layer leads to a decrease in the discharge capacity to 1% of the initial capacity obtained on uncoated electrodes at a density of The current is 25 mA/cm2. Thus, the creation of an active layer on the surface of a commercially available GFD4.6 EA material by airbrush spraying is a fairly simple way to increase the efficiency of the charge-discharge cycle of a vanadium flow battery cell.

Full Text

Restricted Access

About the authors

А. N. Voropay

Dubna State University; Technocomplekt LLC

Author for correspondence.
Email: voropay@uni-dubna.ru
Russian Federation, Dubna; Dubna

E. D. Vladimir

Dubna State University

Email: voropay@uni-dubna.ru
Russian Federation, Dubna

Е. S. Osetrov

Technocomplekt LLC

Email: voropay@uni-dubna.ru
Russian Federation, Dubna

A. А. Usenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: voropay@uni-dubna.ru
Russian Federation, Chernogolovka

E. O. Deriabina

Dubna State University

Email: voropay@uni-dubna.ru
Russian Federation, Dubna

V. V. Zueva

Dubna State University

Email: voropay@uni-dubna.ru
Russian Federation, Dubna

References

  1. Viswanathan, V.V., Crawford, A.J., Thomsen, E.C., Shamim, N., Li, G., Huang, Q., and Reed, D.M., An Overview of the Design and Optimized Operation of Vanadium Redox Flow Batteries for Durations in the Range of 4–24 Hours, Batteries, 2023, vol. 9, p. 221.
  2. Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F. S., and Saleem, M., Progress in Flow Battery Research and Development, Electrochem. Soc., 2011, vol. 158, p. R55.
  3. Kim, K.J., Park, M.S., Kim, Y.J., Kim, J.H., Dou, S.X., and Skyllas-Kasacos, M., A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, Chem. mater. A, 2015, vol. 3, p. 16913.
  4. Parasuraman, A., Meniktas, K., Lim T.M., Skill s-Kazakov, M., Review of research and development of materials for applications of vanadium redox batteries, Electrochim. Acta, 2013, vol. 101, p. 27.
  5. Rabbow, T.J., Trampert, M., Pokorny, P., Binder, P., and Whitehead, A.H., Variability within a single type of polyacrylonitrile-based graphite felt after thermal treatment. Part I: physical properties, Electrochim. Acta, 2015, vol. 173, p. 17.
  6. Cripps, E. and Michael, P.A., Bayesian nonlinear random effects model for identification of defective batteries from lot samples, Power Sources, 2017, vol. 342, p. 342.
  7. Hu, Guangjian, Jing, Minghua, Wang, Da-Wei, Sun, Zhenhua, Xu, Chuan, Ren, Wencai, Cheng, Hui-Ming, Yan, Chuanwei, Fan, Xinzhuang, and Feng, Li, A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries, Energy Storage Mater., 2018, vol. 13, p. 66.
  8. Jiang, Y.Q., Cheng, H., Hua, L., Hui, Z.X., Zhou, J., Ming, W.I., Dai, L., and Wang, L., Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework, Chem. Engineering, 2021, vol. 415, p. 129014.
  9. Bourke, A., Oboroceanu, D., Quill, N., Lenihan, C., Alhaji Safi, M., Miller, M.A., Savinelli, R.F., Wainright, J.S., Sasikumar, V., and Rybalchenko, M., Electrode Kinetics and Electrolyte Stability in Vanadium Flow Batteries, Electrochem. Soc., 2023, vol. 170, p. 030504.
  10. Becker, M., Bredemeyer, N., Tenhumberg, N., and Turek, T., Kinetic studies at carbon felt electrodes for vanadium redox-flow batteries under controlled transfer current density conditions, Electrochim. Acta, 2017, vol. 252, p. 12.
  11. Goulet, M.A., Eikerling, M., and Kjeang, E., Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes, Electrochem. Commun., 2015, vol. 57, p. 14.
  12. Lee, J.W., Hong, J.K., and Jang, E., Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications, Electrochim. Acta, 2012, vol. 83, p. 430.
  13. Jiang, Y., Du, M., Chen, G., Gao, P., Dong, T., Zhou, J., Feng, X., He, Z., Li, Y., Dai, L., Meng, W., and Wang, L., Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery, Energy Chem., 2021, vol. 59, p. 706.
  14. Sun, B. and Skyllas-Kazacos, M., Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochim. Acta, 1991, vol. 36, p. 513.
  15. Di Blasi, A., Di Blasi, O., Briguglio, N., Arico, A.S., Sebastian, D., Lazaro, M.J., Monforte, G., and Antonucci, V., Investigation of several graphite-based electrodes for vanadium redox flow cell, Power Sources, 2013, vol. 227, p. 15.
  16. He, Z., Lv, Y., Zhang, T., Zhou, Y., Dai, L., Yao, S., Zhu, W., and Wang, L., Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst, Chem. Engineering, 2022, vol. 427, p. 131680.
  17. Ghimire, P. C., Schweiz, R., Scherzer, G.G., Wai, N., Lim, T.M., Bhattarai, A., Nguyenab, T.D., and Yan, Q., Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries, Mater. Chem. A, 2018, vol. 6, p. 6625.
  18. Li, B., Gu, M., Nie, Z., Shao, Y., Luo, Q., Wei, X., Li, X., Xiao, J., Wang, C., Sprenkle, V., and Wang, W., Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery, ACS Publ., 2013, vol. 13, p. 1330.
  19. Vazquez-Galvan, J., Flox, C., Jarvis, J.R., Jorge, A.B., Shearing, P.R., and Morante, J.R., High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries, Carbon, 2019, vol. 148, p. 91.
  20. Lee, W., Joe, S., Yuk, S., Shin, H.Y., Lee, J., Chung, Yu., and Kwon, Y., Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery, Appl. Surface Sci., 2018, vol. 429, p. 187.
  21. Li, B., Gu, M., Nie, Z., Wei, X., Wang, C., Sprenkle, V., and Wang, W., Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery, ACS Publ., 2014, vol. 14, p. 158.
  22. Ejigu, A., Edwards, M., and Walsh, D.A., Synergistic Catalyst–Support Interactions in a Graphene–Mn3O4 Electrocatalyst for Vanadium Redox Flow Batteries, ACS Publ., 2015, vol. 5, p. 7122.
  23. Gao, Y., Wang, H., Ma, Q., Wu, A., Zhang, W., Zhang, C., Chen, Z., Zeng, X.X., Wu, X., and Wu, Y., Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries, Carbon, 2019, vol. 148, p. 9.
  24. Wang, R. and Li, Y., Twin-cocoon-derived self-standing nitrogen-oxygen-rich monolithic carbon material as the cost-effective electrode for redox flow batteries, Power Sources, 2019, vol. 421, p. 139.
  25. Chung, Y., Noh, C., and Kwon, Y., Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery, Power Sources, 2019, vol. 438, p. 227063.
  26. Jiang, H.R., Sun, J., Wei, L., Wu, M.C., Shyy, W., and Zhao, T.S., A high power density and long cycle life vanadium redox flow battery, Energy Storage Mater., 2020, vol. 24, p. 529.
  27. Гуревич, И.Г., Вольфкович, Ю.М., Багоцкий, В.С. Жидкостные пористые электроды. Минск: Наука и техника, 1974. 245 с. [Gurevich, I.G., Wolfkovich, Yu.M., and Bagotsky, V.S., Liquid porous electrodes (in Russian), Minsk: Nauka i tekhnika, 1974. 245 p.]
  28. Tian, C.H., Chein, R., Hsueh, K.L., Wu, C.H., and Tsau, F., Design and modeling of electrolyte pumping power reduction in redox flow cells, Rare Metals, 2011, vol. 30, p. 16.
  29. Houser, J., Clement, J., Pezeshki, A., and Bench, M.M., Influence of architecture and material properties on vanadium redox flow battery performance, Power Sources, 2016, vol. 302, p. 369.
  30. Zhang, Chenguang, Du, Haozhe, Ma, Ke, and Yuan, Zhihao, Supercapacitors: Ultrahigh-Rate Supercapacitor Based on Carbon Nano-Onion/Graphene Hybrid Structure toward Compact Alternating Current Filter, Adv. Energy Mater., 2020, vol. 10, p. 43.
  31. Yu, Y., Lu, W., Pei, S., Gong, K., Wang, L., Meng, L., Huang, Y., Smith, J.P., Booksh, K.S., Li, Q., Byun, J.H., Oh, Y., Yan, Y., and Chou, T.W., Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films, ACS Publ., 2016, vol. 10, p. 5204.
  32. Yu, Ma, Ding, Chen, Zhi, Fang, and Yang, Weiyou, High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles, Proc. Natl. Acad. Sci. USA, 2021, vol. 118, p. 21.
  33. Liu, K.L., Jiao, M.L., Chang, P.P., Wang, C.Y., and Chen, M.M., Pitch-based porous aerogel composed of carbon onion nanospheres for electric double layer capacitors, Carbon, 2018, vol. 137, p. 304.
  34. Ma, Wen-Le, Cai, Zhi-Hao, Yi, Zhang, Wang, Zi-Yuan, Lun, Xia, Ma, Su-Ping, Li, Guang-Hao & Yi, Huang, An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene, Chin. J. Polym. Sci., 2020, vol. 38, p. 491.
  35. Liu, J., Wang, Z.A., Wu, X.W., Yuan, X.H., Hu, J.P., Zhou, Q.M., Liu, Z.H., and Wu, Y.P., Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/ couple for vanadium redox battery, Power Sources, 2015, vol. 299, p. 301.
  36. Ryu, J., Park, M., and Cho, J., Catalytic Effects of B/N-co-Doped Porous Carbon Incorporated with Ketjen black Nanoparticles for All-Vanadium Redox Flow Batteries, Electrochem. Soc., 2016, vol. 163, p. A5144.
  37. Hu, Z., Miao, Z., Xu, Z., Zhu, X., Zhong, F., Ding, M., Wang, J., Xie, X., Jia, C., and Liu, J., Carbon felt electrode modified by lotus seed shells for high-performance vanadium redox flow battery, Chem. Engineering, 2022, vol. 450, p. 138377.
  38. Rashitov, I., Voropay, A., Tsepilov, G., Kuzmin, I., Loskutov, A., Kurkin, A., Osetrov, E., and Lipuzhin, I., Vanadium Redox Flow Battery Stack Balancing to Increase Depth of Discharge Using Forced Flow Attenuation, Batteries, 2023, vol. 9, p. 464.
  39. Комаров, В.А., Воропай, А.Н., Ильина, М.Н., Горячева, Т.В. Исследование наноструктурированных углеродных войлочных материалов в качестве электродов ванадиевых проточных аккумуляторных батарей. Электрохимия. 2021. Т. 57. С. 485. [Komarov, V.A., Voropay, A.N., Il'ina, M.N., and Goryacheva, T.V., Research of Nanostructured Carbon Felt Materials as Electrodes of Vanadium Flow Batteries, Russ. J. Electrochem., 2021, vol. 57, p. 892.]
  40. Воропай, А.Н., Кузьмин, И.Н., Лоскутов, А.Б., Осетров, Е.С. Источник питания для автономных систем электроснабжения на базе проточной аккумуляторной батареи. Электричество. 2022. Т. 9. С. 45. [Voropai, A.N., Kuzmin, I.N., Loskutov, A. B., and Osetrov, E.S., Power supply for autonomous power supply systems based on a flow-through battery, Electricity, 2022, vol. 9, p. 45.]
  41. Воропай, А.Н., Рашитов, И.О., Осетров, Е.С. Анализ разрядных параметров системы бесперебойного питания на базе ванадиевой проточной батареи. Энергобезопасность и энергосбережение. 2023. Т. 6. С. 75. [Voropai, A.N., Rashitov, I.O., and Osetrov, E.S., Analysis of discharge parameters of an uninterruptible power supply system based on a vanadium flow battery, Energy security and energy conservation, 2023, vol. 6, p. 75.]
  42. Wu, Qi., Lv, Y., Lin, L., Zhang, X., Liu, Y., Zhou, X., An improved thin-film electrode for vanadium redox flow batteries enabled by a dual layered structure, Power Sources, 2019, vol. 152, p. 410.
  43. Fetyan, A., Derr, I., Kayarkatte, M.K., Langner, J., Bernsmeier, D., Kraehnert, R., and Roth, C., Electrospun Carbon Nanofibers as Alternative Electrode Materials for Vanadium Redox Flow Batteries, Chem. Europe, 2015, vol. 2, p. 2055.
  44. Sankaralingam, R.K., Seshadri, S., Sunarso, J., Bhatt, A.I., and Kapoor, A., Overview of the factors affecting the performance of vanadium redox flow batteries, Energy Storage, 2021, vol. 41, p. 102857.
  45. Oh, K., Moazzam, M., Gwak, G., and Ju, H., Water crossover phenomena in all-vanadium redox flow batteries, Electrochim. Acta, 2019, vol. 297, p. 101.
  46. Li, Y., Skyllas-Kazacos, M., and Bao, J., A dynamic plug flow reactor model for a vanadium redox flow battery cell, Power Sources, 2016, vol. 311, p. 57.
  47. Pugach, M., Vyshinsky, V., and Bischi, A., Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system, Appl. Energy, 2019, vol. 253, p. 113533.
  48. Dewage, H. H., Yufit, V., and Brandon, N. P., Study of Loss Mechanisms Using Half-Cell Measurements in a Regenerative Hydrogen Vanadium Fuel Cell, Electrochem. Soc., 2015, vol. 163, p. 5236.
  49. Lantao, Wu, Jianshe, Wang, Yi, Shen, Le, Liu, and Jingyu, Xi, Electrochemical evaluation methods of vanadium flow battery electrodes, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 14708.
  50. Choi, C., Kim, S., Kim, R., Choi, Y., Kim, S., Jung, H., Yang, J.H., and Kim, H.T., A review of vanadium electrolytes for vanadium redox flow batteries, Renewable and Sustainable Energy Rev., 2017, vol. 69, p. 263.
  51. Burk, A., Oboroceanu, D., Quil, N., Lenihan, S., Al haji Safi M., Miller, M.M., Savinell, R.F., Wainwright, D.S., Sasikumar, V., Rybalchenko, M., Amini, P., Dalton, N., Lynch, R.P., and Buckley, D.N., Electrode Kinetics and Electrolyte stability in Vanadium flow Batteries, Electrochem. Soc., 2023, vol. 170, p. 030504.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photo of the cell (a) and cell model (b): 1 – proton-conducting membrane Nafion 117, 2 – porous electrode, 3 – plate limiting the electrode space, 4 – graphite electrode, 5 – outer casing of the cell.

Download (201KB)
3. Fig. 2. Photo of the surface of samples FBE-0 (a), FBE-2 (b), FBE-7.5 (c) and FBE-20 (d).

Download (583KB)
4. Fig. 3. Charge-discharge curves for samples at a current density of 50 mA/cm2 (a); charge-discharge curves for the FBE-2 sample at different current densities (b); curves of the normalized discharge capacity EU from the current density (c); curves of the dependence of the energy efficiency on the current density (d).

Download (355KB)
5. Fig. 4. Nyquist diagrams for voltage of 1.3 V (a) and 1.5 V (b). Equivalent circuits for describing Nyquist diagrams (c).

Download (178KB)
6. Fig. 5. Histograms of the contribution of each resistance to the cell operation process for a voltage of 1.3 V (a) and 1.5 V (b).

Download (124KB)

Copyright (c) 2024 Russian Academy of Sciences