Model describing of the process of electrodeposition of loose zinc deposits in pulsed potential modes
- 作者: Nikitin V.S.1, Ostanina T.N.1, Rudoy V.M.1
-
隶属关系:
- Ural Federal University named after the first President of Russia B.N. Yeltsin
- 期: 卷 60, 编号 2 (2024)
- 页面: 124-138
- 栏目: Articles
- URL: https://snv63.ru/0424-8570/article/view/671608
- DOI: https://doi.org/10.31857/S0424857024020028
- EDN: https://elibrary.ru/RFPWWT
- ID: 671608
如何引用文章
详细
The structural characteristics of loose zinc deposits obtained in pulsed potential modes were calculated using a phenomenological model. Increasing the duty cycle leads to increased anodic dissolution during pauses and obtaining denser deposits, due to the formation of dendrites with fewer vertices, but with a larger diameter compared to deposits obtained in the potentiostatic mode. The linear dependence of the diameter of the tips of dendrites forming a loose zinc deposit on the duty cycle was found. It is shown that there is a critical time corresponding to the achievement of zero deposit growth rate when the metal deposited during the pulse will completely dissolve during the pause.
全文:

作者简介
V. Nikitin
Ural Federal University named after the first President of Russia B.N. Yeltsin
编辑信件的主要联系方式.
Email: nikitin-viachieslav@mail.ru
Institute of Chemical Engineering
俄罗斯联邦, YekaterinburgT. Ostanina
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: ostni@mail.ru
Institute of Chemical Engineering
俄罗斯联邦, YekaterinburgV. Rudoy
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: nikitin-viachieslav@mail.ru
Institute of Chemical Engineering
俄罗斯联邦, Yekaterinburg参考
- Sharifi, B., Mojtahedi, M., Goodarzi, М., and Vahdati, K.J., Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder, Hydrometallurgy, 2009, vol. 99, p. 72.
- Коровин, Н.В., Скундин, А.М. Химические источники тока: Справочник, М.: Изд-во МЭИ, 2003. 740 с. [Korovin, N.V. and Skundin, A.M., Chemical sources of current: Handbook (in Russian), Moscow: Publ. House of MEI, 2003. 740 p.]
- Кромптон, Т.Р. Первичные источники тока (пер. с англ.), М.: Мир, 1986. 328 с. [Crompton, T.R., Small Batteries: Primary Cells, London, Basingstoke: The Macmillan Press Ltd., 1982. 241 p.]
- Толстошеева, С.И., Степин, С.Н., Давыдова, М.С., Вахин, А.В. Влияние наноразмерного цинкового порошка на защитные свойства протекторных покрытий. Вестник КТУ. 2012. Т. 15. С. 98. [Tolstosheeva, S.I., Stepin, S.N., Davydova, M.S., and Vakhin, A.V., The effect of nanoscale zinc powder on the protective properties of tread coatings, Vestnik Kazanskovo Tekhnologicheskovo Universiteta (in Russian), 2012, vol. 15, p. 98.]
- Таныгина, Е.Д., Пономарева, М.В., Прусаков, А.В., Урядников, А.А. Модифицированные порошком цинка и графита антикоррозионные составы на основе продуктов рафинирования низкоэрукового рапсового масла. Вестник ТГУ. 2009. Т. 14. С. 100. [Tanygina, E.D., Ponomareva, M.V., Prusakov, A.V., and Uryadnikov, A.A., Anticorrosive compositions modified with zinc and graphite powder based on refining products of low-grade rapeseed oil, Vestnik Tomskovo Gosudarstvennovo Universiteta (in Russian), 2009, vol. 14, p. 100.]
- Алкацев, М.И. Процессы цементации в цветной металлургии. М.: Металлургия, 1981. 116 с. [Alkatsev, M.I., Cementation processes in non-ferrous metallurgy (in Russian), Moscow: Metallurgy, 1981. 116 p.]
- Steinfeld, A., Solar thermochemical production of hydrogen – a review, Sol. Energy, 2005, vol. 78, p. 603.
- Villasmil, W., Meier, A., and Steinfeld, A., Dynamic modeling of a solar reactor for zinc oxide thermal dissociation and experimental validation using IR thermography, J. Sol. Energy Eng., 2014, vol. 6, p. 010901.
- Weidenkaff, A., Steinfeld, A., Wokaun, A., Auer, P., Eichler, B., and Reller, A., Direct solar thermal dissociation of zinc oxide: condensation and crystallisation of zinc in the presence of oxygen, Sol. Energy, 1999, vol. 65, p. 59.
- Vishnevetsky, I. and Epstein, M., Production of hydrogen from solar zinc in steam atmosphere, Intern. J. Hydrogen Energy, 2007, vol. 32, p. 2791.
- Bhosale, R.R., Solar hydrogen production via ZnO/Zn based thermochemical water splitting cycle: Effect of partial reduction of ZnO, Intern. J. Hydrogen Energy, 2020, vol. 46, p. 4739.
- Tamaura, Y., Kojima, M., Sano, T., Ueda, Y., Hasegawa, N., and Tsuji, M., Thermodynamic evaluation of water splitting by a cation-excessive (Ni, Mn) ferrite, Intern. J. Hydrogen Energy, 1998, vol. 23, p. 1185.
- Ullah, S., Badshah, A., Ahmed, F., Raza, R., Altaf, A.A., and Hussain, R., Electrodeposited zinc electrodes for high current Zn/AgO Bipolar Batteries, Intern. J. Electrochem. Sci., 11, p. 3801.
- Neikov, O.D., Nabojchenko, S.S., Murashova, I.B., Gopienko, V.G., Frishberg, I.V., and Lotsko D.V., Handbook of Non-ferrous Metal Powders: Technologies and applications, London, N-Y, Amsterdam: Elsevier, 2009. 634 p.
- Помосов, А.В., Мурашова, И.Б. Исследование влияния режимов электролиза на дисперсность и насыпной вес никелевого порошка. Порошковая металлургия. 1966. № 6. С. 1. [Pomosov, A.V. and Murashova, I.B., Investigation of the effect of electrolysis modes on the dispersion and bulk weight of nickel powder, Poroshkovaya Metallurgiya (in Russian), 1966, no. 6, p. 1.]
- Diggle, J.W., Despić, A.R., and Bockris, J.O’M., The mechanism of the dendritic electrocrystallization of zinc, J. Electrochem. Soc., 1969, vol. 116, p. 1503.
- Popov, K.I., Djikić, L.М., Pavlović, M.J., and Maksimović, M.D., The critical overpotential for copper dendrite formation, J. Appl. Electrochem., 1979, vol. 9, p. 527.
- Nikolić, N.D., Branković, G., Maksimović, V.M., Pavlović, M.G., and Popov, K.I., Influence of potential pulse conditions on the formation of honeycomb-like copper electrodes, J. Electroanal. Chem., 2009, vol. 635, p. 111.
- Popov, K.I., Nikolić, N.D., Živković, P.M., Branković, G., and Popov, K.I., The effect of the electrode surface roughness at low level of coarseness on the polarization characteristics of electrochemical processes, Electrochim. Acta, 2010, vol. 55, p. 1919.
- Nikolić, N.D., Branković, G., and Popov, K.I., Optimization of electrolytic process of formation of open and porous copper electrodes by the pulsating current (PC) regime, Mater. Chem. and Phys., 11, vol. 5, p. 587.
- Nikolić, N.D., Branković, G., and Pavlović, M.G., Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen, Powder Technol., 2012, vol. 221, p. 271.
- Nikolić, N.D. and Branković, G., Effect of parameters of square-wave pulsating current on copper electrodeposition in the hydrogen co-deposition range, Electrochem. Commun., 2010, vol. 12, p. 740.
- Nikolić, N.D., Branković, G., Maksimović, V.M., Pavlović, M.G., and Popov, K.I., Influence of potential pulse conditions on the formation of honeycomb-like copper electrodes, J. Electroanal. Chem., 2009, vol. 635, p. 111.
- Karimi Tabar Shafiei, F., Jafarzadeh, K., Madram, A.R., and Nikolić, N.D., A novel route for electrolytic production of very branchy copper dendrites under extreme conditions, J. Electrochem. Soc., 2021, vol. 8, p. 043502.
- Ostanina, T.N., Rudoy, V.M., Nikitin, V.S., Darintseva, A.B., and Demakov S.L., Change in the physical characteristics of the dendritic zinc deposits in the stationary and pulsating electrolysis, J. Electroanal. Chem., 2017, vol. 784, p. 13.
- Никитин, В.С., Останина, Т.Н., Рудой, В.М. Влияние параметров режима импульсного потенциала на концентрационные изменения в объеме рыхлого осадка цинка и его свойства. Электрохимия. 2018. Т. 54. С. 767. [Nikitin, V.S., Ostanina, T.N., and Rudoi, V.M., Effect of parameters of pulsed potential mode on concentration changes in the bulk loose zinc deposit and its properties, Russ. J. Electrochem., 2018, vol. 54, p. 665.]
- Despić, A.R., Diggle, J., and Bockris, J.O., Mechanism of formation of zinc dendrites, J. Electrochem. Soc., 1968, vol. 115, p. 507.
- Popov, K.J., Pavlović, M.G., Spasogević, M.D., and Nakić, V.M., The critical overpotential for zinc dendrite formation, J. Appl. Electrochem., 1979, vol. 9, p. 533.
- Мурашова, И.Б., Помосов, А.В., Эделева, Н.А. Динамическая модель развития дисперсного осадка в гальваностатических условиях: влияние кислотности электролита на кинетику роста дендритов. Электрохимия. 1979. Т. 15. С. 182. [Murashova, I.B., Pomosov, A.V., and Edeleva, N.A., Dynamic model of dispersed deposit development under galvanostatic conditions: The effect of electrolyte acidity on the kinetics of dendrite growth, Russ. J. Electrochem., 1979, vol. 15, p. 182.]
- Мурашова, И.Б., Помосов, А.В., Воробьев, В.И., Музгина, Е.В. Динамическая модель роста дендритного осадка в гальваностатических условиях: влияние материала катода на скорость роста дендритов. Электрохимия. 1981. Т. 27. С. 548. [Murashova, I.B., Pomosov, A.V., Vorobyov, V.I., and Muzgina, E.V., Dynamic model of dendritic deposit growth under galvanostatic conditions: Influence of cathode material on dendrite growth rate, Russ. J. Electrochem., 1981, vol. 27, p. 548.]
- Мурашова, И.Б., Помосов, А.В., Тишкина, Т.Н. Динамическая модель развития дисперсного осадка в гальваностатических условиях: влияние природы разряжающегося металла на динамику роста дендритов. Электрохимия. 1982. Т. 18. С. 449. [Murashova, I.B., Pomosov, A.V., and Tishkina, T.N., Dynamic model of dispersed deposit development under galvanostatic conditions: Influence of the nature of the discharged metal on the dynamics of dendrite growth, Russ. J. Electrochem., 1982, vol. 18, p. 449.]
- Мурашова, И.Б., Бурханова, Н.Г. Расчет структурных изменений дендритного осадка в процессе гальваностатического электролиза. Электрохимия. 2001. Т. 37. С. 871. [Murashova, I.B. and Burhanova, N.G., Calculation of structural changes of dendritic deposit during galvanostatic electrolysis, Russ. J. Electrochem., 2001, vol. 37, p. 871.]
- Ostanina, T.N., Rudoi, V.M., Patrushev, A.V., Darintseva, A.B., and Farlenkov, A.S., Modelling the dynamic growth of copper and zinc dendritic deposits under the galvanostatic electrolysis conditions, J. Electroanal. Chem., 2015, vol. 750, p. 9.
- Никитин, В.С., Останина, Т.Н., Рудой, В.М., Останин, Н.И. Модельное описание процесса электроосаждения рыхлых осадков цинка в импульсных режимах задания тока. Электрохимия. 2023. Т. 59. С. 391.
- Гамбург, Ю.Д., Зангари, Дж. Теория и практика электроосаждения металлов (пер. с англ.), М.: Бином. Лаборатория знаний, 2015. 439 с. [Gamburg, Y.D. and Zangari, G., Theory and practice of metal electrodeposition, N.Y.: Springer Science & Business Media, 2011. 378 p.]
- Плит, В. Электрохимия в материаловедении (пер. с англ.), М.: Бином. Лаборатория знаний, 2015. 446 с. [Plieth, W., Electrochemistry for Materials Science, Amsterdam, Netherlands: Elsevier Science, 2008. 432 p.]
- де Векки, Д.А., Москвин, А.В., Петров, М.Л., Резников, А.Н., Скворцов, Н.К., Тришин, Ю.Г. Новый справочник химика и технолога. Основные свойства неорганических, органических и элементоорганических соединений, С.-Пб.: Мир и Семья, 2002. С. 348. [de Vecchi, D.A., Moskvin, A.V., Petrov, M.L., Reznikov, A.N., Skvortsov, N.K., and Trishin, Yu.G., New handbook of chemist and technologist. Basic properties of inorganic, organic and elementoorganic compounds (in Russian), Saint-Petersburg: “Mir i Sem’ya”, 2002. p. 348.]
- Никитин, В.С., Останина, Т.Н., Кумков, С.И., Рудой, В.М., Останин, Н.И. Определение периода наращивания рыхлого осадка цинка с использованием методов интервального анализа. Известия вузов. Порошковая металлургия и функциональные покрытия. 2020. № 1. С. 11. [Nikitin, V.S., Ostanina, T.N., Kumkov, S.I., Rudoy, V.M., and Ostanin, N.I., Determination of the growth time period of loose zinc deposit using interval analysis methods, Russ. J. Non-Ferrous Met., 2020, vol. 61, p. 540.]
补充文件
