Synthesis of granulated hydrophobic magnetic sorbents and composite sponges based on Fe3O4/Zn-Al-LDH for oil pollution removal

封面

如何引用文章

全文:

详细

In this study, we present a novel surface modification approach for magnetic composite materials based on Fe3O4/Zn-Al layered double hydroxides (LDH) to enhance their hydrophobic properties. We have systematically investigated the interaction mechanisms between various surfactants (stearate, oleate, and sodium dodecyl sulfate) and the Fe3O4/Zn-Al-LDH surface. Our research examined how ethanol-mediated hydrophobization affects the material's porous and crystalline structure. We developed innovative synthesis routes for both granulated and sponge-like magnetic sorbents utilizing melamine-formaldehyde resin as a binding matrix. Under optimized conditions, the resulting Fe3O4-LDH-ST granulated sorbents and MEL-Fe3O4/LDH-ST sponge-like materials demonstrated exceptional oil sorption capacities of 0.60 and 21.36 g/g, respectively, combined with significant magnetic susceptibility, enhanced hydrophobicity, and excellent regeneration potential. These engineered materials show promise for marine oil spill remediation and environmental monitoring applications.

全文:

受限制的访问

作者简介

N. Ivanov

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Vladivostok

O. Shichalin

Sakhalin State University

编辑信件的主要联系方式.
Email: ivanov.np@dvfu.ru
俄罗斯联邦, Yuzhno-Sakhalinsk

V. Rastorguev

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Vladivostok

V. Zakharenko

Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Vladivostok

A. Myagchilov

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Vladivostok

P. Marmaza

Sakhalin State University

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Yuzhno-Sakhalinsk

Ya. Zernov

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Vladivostok

S. Pisarev

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Vladivostok

I. Buravlev

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Vladivostok

E. Papynov

Far Eastern Federal University

Email: ivanov.np@dvfu.ru
俄罗斯联邦, Vladivostok

参考

  1. Huang L., Liow J., Lim K. et al. // Adv. Sustain. Syst. 2024. V. 8. № 8. https://doi.org/10.1002/adsu.202300659
  2. Riyal I., Sharma H., Dwivedi C. // Groundw. Sustain. Dev. 2024. V. 26. P. 101274. https://doi.org/10.1016/j.gsd.2024.101274
  3. Paul J., Qamar A., Ahankari S.S. et al. // Carbohydr. Polym. 2024. V. 338. P. 122198. https://doi.org/10.1016/j.carbpol.2024.122198
  4. Vialkova E., Korshikova E., Fugaeva A. // Water. 2024. V. 16. № 18. P. 2626. https://doi.org/10.3390/w16182626
  5. Li A., Huber T., Barker D. et al. // Carbohydr. Polym. 2024. V. 343. P. 122432. https://doi.org/10.1016/j.carbpol.2024.122432
  6. Chakraborty S., Tripathi A. // J. Water Process Eng. 2024. V. 67. P. 106242. https://doi.org/10.1016/j.jwpe.2024.106242
  7. Liu Z., Gao B., Zhao P. et al. // Sep. Purif. Technol. 2024. V. 337. P. 126347. https://doi.org/10.1016/j.seppur.2024.126347
  8. Papynov E.K., Dran’kov A.N., Tkachenko I.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. P. 820. https://doi.org/10.1134/S0036023620060157
  9. Tkachenko I.A., Panasenko A.E., Odinokov M.M. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1142. https://doi.org/10.1134/S0036023620080173
  10. Shapkin N.P., Panasenko A.E., Khal’chenko I.G. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1614. https://doi.org/10.1134/S0036023620100186
  11. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 7. P. 879. https://doi.org/10.1134/S0036023617070129
  12. Seliverstov E.S., Pisarenko A.S., Yapryntsev M.N. et al. // Ceram. Int. 2024. № September. P. 10. https://doi.org/10.1016/j.ceramint.2024.11.024
  13. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 1010. https://doi.org/10.1134/S0036023619080060
  14. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1291. https://doi.org/10.1134/S0036023624601715
  15. Ivanov N.P., Drankov A.N., Papynov E.K. et al. // Prot. Met. Phys. Chem. Surfaces. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
  16. Bian K., Guo H., Lai Z. et al. // Sep. Purif. Technol. 2025. V. 358. № PB. P. 130263. https://doi.org/10.1016/j.seppur.2024.130263
  17. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 622. https://doi.org/10.1134/S0036023622050175
  18. Fadeev V.V., Tronov A.P., Tolchev A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 5. P. 538. https://doi.org/10.1134/S0036023623600478
  19. Duan J., Jia P., Liu Z. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1646. https://doi.org/10.1134/S0036023624601624
  20. Gowda A.H.D., Mendke T., Srilakshmi C. // J. Porous Mater. 2024. V. 31. № 3. P. 959. https://doi.org/10.1007/s10934-024-01576-x
  21. Sobhana S.S.L., Zhang X., Kesavan L. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2017. V. 522. P. 416. https://doi.org/10.1016/j.colsurfa.2017.03.025
  22. Dutta K., Pramanik A. // Chem. Commun. 2013. V. 49. № 57. P. 6427. https://doi.org/10.1039/c3cc42260g
  23. Qiao W., Bai H., Tang T. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2019. V. 577. P. 118. https://doi.org/10.1016/j.colsurfa.2019.05.046
  24. Santosa S.J., Krisbiantoro P.A., Minh Ha T.T. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2021. V. 614. P. 126159. https://doi.org/10.1016/j.colsurfa.2021.126159
  25. Chengqian F., Wanbing L., Yimin D. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2023. P. 130921. https://doi.org/10.1016/j.colsurfa.2023.130921
  26. Balybina V.A., Dran’kov A.N., Shichalin O.O. et al. // J. Compos. Sci. 2023. V. 7. № 11. P. 458. https://doi.org/10.3390/jcs7110458
  27. Ivanov N.P., Dran A.N., Shichalin O.O. et al. // Prot. Met. Phys. Chem. Surf. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
  28. Rajabi M., Abolhosseini M., Hosseini-Bandegharaei A. et al. // Microchem. J. 2020. V. 159. P. 105450. https://doi.org/10.1016/j.microc.2020.105450
  29. Biata N.R., Jakavula S., Mashile G.P. et al. // Hydrometallurgy. 2020. V. 197. P. 105447. https://doi.org/10.1016/j.hydromet.2020.105447
  30. Jung I.K., Jo Y., Han S.C. et al. // Sci. Total Environ. 2020. V. 705. P. 135814. https://doi.org/10.1016/j.scitotenv.2019.135814
  31. Gao Y., Xing H., Zhang Y. // Sep. Purif. Technol. 2025. V. 354. № July 2024. P. 128721. https://doi.org/10.1016/j.seppur.2024.128721
  32. Khumsap S., Parapichai N., Lertsarawut P. et al. // Radiat. Phys. Chem. 2025. V. 226. № May 2024. P. 112287. https://doi.org/10.1016/j.radphyschem.2024.112287
  33. Ghasemi F., Jamshidi M., Ghamarpoor R. // Water Resour. Ind. 2024. V. 32. P. 100268. https://doi.org/10.1016/j.wri.2024.100268
  34. Tomon T.R.B., Omisol C.J.M., Aguinid B.J.M. et al. // Sci. Rep. 2024. V. 14. № 1. P. 1. https://doi.org/10.1038/s41598-024-64178-2
  35. Akanji I.O., Iwarere S.A., Sani B.S. et al. // Chem. Eng. Sci. 2024. V. 298. № November 2023. P. 120383. https://doi.org/10.1016/j.ces.2024.120383
  36. Tomkowiak K., Mazela B., Szubert Z. et al. // Molecules. 2024. V. 29. № 19. P. 4661. https://doi.org/10.3390/molecules29194661
  37. Saleem S., Khalid S., Nazir A. et al. // RSC Adv. 2024. V. 14. № 35. P. 25393. https://doi.org/10.1039/d4ra03924f
  38. Farahat M., Sobhy A., Sanad M.M.S. // Sci. Rep. 2022. V. 12. № 1. P. 1. https://doi.org/10.1038/s41598-022-15187-6

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffraction patterns of the original and modified granulated sorption materials based on Fe3O4/Zn-Al-LDH.

下载 (185KB)
3. Fig. 2. Differential curves of pore size distribution in the original and modified granular sorption materials based on Fe3O4/Zn-Al-LDH.

下载 (169KB)
4. Fig. 3. SEM images and EDS maps of the elemental distribution over the surface of the original and modified granular sorption materials: a – Fe3O4/SDG, b – Fe3O4/SDG-OL-0.01, Fe3O4/SDG-ST-0.01, Fe3O4/SDG-DOD-0.01.

下载 (1MB)
5. Fig. 4. Sorption capacity in relation to oil, motor oil and water for the original and modified granulated sorption materials based on Fe3O4/Zn-Al-LDH.

下载 (202KB)
6. Fig. 5. Water contact angles for spongy hydrophobic magnetic composites: a – MEL-Fe3O4/SDG-OL-0.01, b – MEL-Fe3O4/SDG-OL-0.05.

下载 (98KB)
7. Fig. 6. Sorption capacity in relation to oil, motor oil and water for the original and modified spongy sorption materials MEL-Fe3O4/SDG.

下载 (126KB)
8. Fig. 7. Sorption indices in relation to oil in multiple adsorption–desorption cycles for modified granular sorption materials MEL-Fe3O4/SDG-OL-0.01 and -0.05.

下载 (138KB)
9. Fig. 8. Sorption indices in relation to oil in multiple adsorption–desorption cycles for modified spongy sorption materials MEL-Fe3O4/SDG-OL-0.01: a – sorption capacity, b – water contact angle after five cycles.

下载 (137KB)
10. Fig. 9. Proposed mechanism of surface hydrophobization of LDH using the example of interaction with sodium stearate.

下载 (164KB)

版权所有 © Russian Academy of Sciences, 2025