Synthesis and characterization of mixed bimetallic layered (Cr,V)C carbide

详细

The paper presents the synthesis of layered complex carbide of the composition (Cr,V)C using reactive spark plasma sintering (SPS-RS) and hydrothermal acid etching. Using SEM and TEM, a detailed study of the macro- and nano-structure at each stage of MAXene synthesis was carried out. The presence of characteristic features of the formation of two-dimensional carbide in the form of particles and fragments of a multilayer structure at the macro- and nanolevel was confirmed. Using EDS and XRD, the elemental and phase composition of the samples was studied, as a result it was found that the initial expected MAX-phase Cr2VAlC2 in the composition of the sample obtained by SPS is absent. At the same time, a phase of mixed bimetallic carbide (Cr,V)C was detected at all stages of synthesis, for which the crystal lattice parameters, including the unit cell volume, change significantly after acid etching. Obvious changes in the bulk and crystalline structure of (Cr,V)C correspond to the formation of two-dimensional nanoparticles in the synthesized material. The magnetic characteristics study showed that all samples have magnetic hysteresis with relatively low values of coercivity and remanence to saturation magnetization ratio. Low-temperature measurements showed a slight increase in magnetic moment with decreasing temperature for the sample obtained under reaction SPS conditions before acid etching in HF, without significant changes in magnetic behavior of the samples.

全文:

受限制的访问

作者简介

E. Papynov

Far Eastern Federal University

编辑信件的主要联系方式.
Email: papynov@mail.ru
俄罗斯联邦, Vladivostok

A. Ognev

Far Eastern Federal University; Sakhalin State University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok; Yuzhno-Sakhalinsk

M. Gurin

Far Eastern Federal University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok

N. Ivanov

Far Eastern Federal University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok

O. Shichalin

Far Eastern Federal University; Sakhalin State University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok; Yuzhno-Sakhalinsk

A. Lembikov

Far Eastern Federal University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok

M. Sobirov

Far Eastern Federal University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok

K. Rogachev

Far Eastern Federal University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok

A. Samardak

Far Eastern Federal University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok

A. Samardak

Far Eastern Federal University; Sakhalin State University

Email: papynov@mail.ru
俄罗斯联邦, Vladivostok; Yuzhno-Sakhalinsk

参考

  1. Cao Y., Xing G., Lin H. et al. // iScience. 2020. V. 23. № 10. P. 101614. https://doi.org/10.1016/j.isci.2020.101614
  2. Zhang Q., Zhang Z., Li C. et al. // Chip. 2023. V. 2. № 4. P. 1. https://doi.org/10.1016/j.chip.2023.100059
  3. Zhao H., Yun J., Li Z. et al. // Mater. Sci. Eng. R Reports. 2024. V. 161. P. 100873. https://doi.org/10.1016/j.mser.2024.100873
  4. Telegin A.V., Namsaraev Z.Z., Bessonov V.D. et al. // Mod. Electron. Mater. 2024. V. 10. № 1. P. 51. https://doi.org/10.3897/j.moem.10.1.130290
  5. Samardak A.Y., Sobirov M.I., Rogachev K.A. et al. // Small. 2024. V. 2401270. P. 1. https://doi.org/10.1002/smll.202401270
  6. Lv L., Zhang P., Yang X. et al. // Surfaces and Interfaces. 2024. V. 44. № September 2023. P. 103678. https://doi.org/10.1016/j.surfin.2023.103678
  7. Ahmadi B., Montazer M.N., Bozorg A. et al. // MXenes synthesis and characterization, in: MXenes as Surface-Active Adv. Mater., Elsevier. 2024, P. 33–61. https://doi.org/10.1016/B978-0-443-13589-7.00022-5
  8. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. P. 1. https://doi.org/10.1134/S0036023624601703
  9. Alam M.S., Chowdhury M.A., Khandaker T. et al. // RSC Adv. 2024. V. 14. № 37. P. 26995. https://doi.org/10.1039/D4RA03714F
  10. Shichalin O.O., Ivanov N.P., Seroshtan A.I. et al. // Ceram. Int. 2024. https://doi.org/10.1016/j.ceramint.2024.10.161
  11. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
  12. Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors 2023. V. 11. № 1. P. 1. https://doi.org/10.3390/chemosensors11010007
  13. Ateş S., Süzer I., Erol A.M. et al. // ITU J. Metall. Mater. Eng. 2024. P. 16.
  14. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1838. https://doi.org/10.1134/S0036023622601222
  15. Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. P. 142. https://doi.org/10.3390/chemosensors11020142
  16. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. P. 1. https://doi.org/10.1134/S0036023624600850
  17. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601727
  18. He J., Frauenheim T. // J. Phys. Chem. Lett. 2020. V. 11. № 15. P. 6219. https://doi.org/10.1021/acs.jpclett.0c02007
  19. Yadav A., Agarwal S., Khan S. // 2D Metal Carbides and Nitrides (MXenes) in Water Treatment, 2024. https://doi.org/10.1007/978-981-99-8010-9_5
  20. Si C., Zhou J., Sun Z. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 31. P. 17510. https://doi.org/10.1021/acsami.5b05401
  21. He J., Lyu P., Sun L.Z. et al. // J. Mater. Chem. 2016. V. 4. № 27. P. 6500. https://doi.org/10.1039/c6tc01287f
  22. He J., Frauenheim T. // J. Phys. Chem. Lett. 2020. V. 11. № 15. P. 6219. https://doi.org/10.1021/acs.jpclett.0c02007
  23. Gutierrez-Ojeda S.J., Ponce-Pérez R., Guerrero-Sánchez J. et al. // Graphene 2D Mater. 2024. V. 9. № 1–2. P. 47. https://doi.org/10.1007/s41127-023-00068-0
  24. Zou X., Liu H., Xu H. et al. // Mater. Today Energy. 2021. V. 20. P. 100668. https://doi.org/10.1016/j.mtener.2021.100668
  25. Akinola O., Chakraborty I., Celio H. et al. // J. Mater. Res. 2021. V. 36. № 10. P. 1980. https://doi.org/10.1557/s43578-021-00258-7

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM images of the structure of the sample obtained by IPS: A, B, C – local areas of enlarged scale.

下载 (804KB)
3. Fig. 2. TEM images of the structure of the sample obtained by IPS: A, B – local areas of increased scale.

下载 (532KB)
4. Fig. 3. SEM images of the sample structure after acid etching: A, B, C – local areas of enlarged scale.

下载 (724KB)
5. Fig. 4. TEM images of the sample structure after acid etching: A, B – local areas of enlarged scale.

下载 (616KB)
6. Fig. 5. EDS analysis of the sample surface before (a) and after acid etching (b).

下载 (374KB)
7. Fig. 6. Experimental and simulated X-ray diffraction profiles for a sample obtained by IPS.

下载 (221KB)
8. Fig. 7. Experimental and simulated X-ray diffraction profiles for a sample of layered complex chromium-vanadium carbide.

下载 (193KB)
9. Fig. 8. Magnetic hysteresis loops of the studied samples (a) (the inset shows a loop for a sample of two-dimensional nanoparticles of the composition (Cr,V)C) and normalized loops (b).

下载 (158KB)
10. Fig. 9. Magnetic hysteresis loops for samples before (a) and after (b) acid etching (layered complex carbide of composition (Cr,V)C). The red line indicates magnetic hysteresis loops obtained at room temperature, the blue line – at 100 K.

下载 (145KB)
11. Fig. 10. Cooling curves in the zero ZFC field (a) and in the FC field (b) for all samples.

下载 (167KB)

版权所有 © Russian Academy of Sciences, 2025