Hexagonal borophene stabilized by mixed doping: structure, stability, electronic and mechanical properties
- 作者: Steglenko D.V.1, Gribanova T.N.1, Minyaev R.M.1
-
隶属关系:
- Southern Federal University
- 期: 卷 70, 编号 1 (2025)
- 页面: 73–80
- 栏目: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://snv63.ru/0044-457X/article/view/682191
- DOI: https://doi.org/10.31857/S0044457X25010082
- EDN: https://elibrary.ru/CVNOSN
- ID: 682191
如何引用文章
详细
Using DFT calculations, the possibility of stabilizing the hexagonal honeycomb shape of borophene by mixed doping in the B6Ga2Mg4 system was showed, where a flat sheet of borophene is placed between two layers formed by magnesium and gallium atoms. B6Ga2Mg4 is a relatively soft material with metallic conductivity. Evaluation of the thermodynamic stability of this compound shows that melting will occur at temperatures above 1200 K.
全文:

作者简介
D. Steglenko
Southern Federal University
编辑信件的主要联系方式.
Email: dvsteglenko@sfedu.ru
Institute of Physical and Organic Chemistry
俄罗斯联邦, Rostov-on-Don, 344090T. Gribanova
Southern Federal University
Email: dvsteglenko@sfedu.ru
Institute of Physical and Organic Chemistry
俄罗斯联邦, Rostov-on-Don, 344090R. Minyaev
Southern Federal University
Email: dvsteglenko@sfedu.ru
Institute of Physical and Organic Chemistry
俄罗斯联邦, Rostov-on-Don, 344090参考
- Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. № 5696. P. 666. https://doi.org/10.1126/science.1102896
- Castro Neto A.H., Guinea F., Peres N.M.R. et al. // Rev. Mod. Phys. 2009. V. 81. № 1. P. 109. https://doi.org/10.1103/RevModPhys.81.109
- Yang X., Xu M., Qiu W. et al. // J. Mater. Chem. 2011. V. 21. № 22. P. 8096. https://doi.org/10.1039/c1jm10697j
- Wang Q.H., Kalantar-Zadeh K., Kis A. et al. // Nat. Nanotechnol. 2012. V. 7. № 11. P. 699. https://doi.org/10.1038/nnano.2012.193
- Radisavljevic B., Radenovic A., Brivio J. et al. // Nat. Nanotechnol. 2011. V. 6. № 3. P. 147. https://doi.org/10.1038/nnano.2010.279
- Chen Y.L., Analytis J.G., Chu J.-H. et al. // Science. 2009. V. 325. № 5937. P. 178. https://doi.org/0.1126/science.1173034
- Jariwala D., Sangwan V.K., Lauhon L.J. et al. // ACS Nano. 2014. V. 8. № 2. P. 1102. https://doi.org/10.1021/nn500064s
- Miao N., Xu B., Bristowe N.C. et al. // J. Am. Chem. Soc. 2017. V. 139. № 32. P. 11125. https://doi.org/10.1021/jacs.7b05133
- Kumar H., Frey N.C., Dong L. et al. // ACS Nano. 2017. V. 11. № 8. P. 7648. https://doi.org/10.1021/acsnano.7b02578
- Tan C., Cao X., Wu X.-J. et al. // Chem. Rev. 2017. V. 117. № 9. P. 6225. https://doi.org/10.1021/acs.chemrev.6b00558
- Xu M., Liang T., Shi M. et al. // Chem. Rev. 2013. V. 113. № 5. P. 3766. https://doi.org/10.1021/cr300263a
- Gribanova T.N., Minyaev R.M., Minkin V.I. et al. // Struct. Chem. 2020. V. 31. № 6. P. 2105. https://doi.org/10.1007/s11224-020-01606-9
- Kaneti Y.V., Benu D.P., Xu X. et al. // Chem. Rev. 2022. V. 122. № 1. P. 1000. https://doi.org/10.1021/acs.chemrev.1c00233
- Yadav S., Sadique M.A., Kaushik A. et al. // J. Mater. Chem. B. 2022. V. 10. № 8. P. 1146. https://doi.org/10.1039/d1tb02277f
- Wang Z.-Q., Lü T.-Y., Wang H.-Q. et al. // Front. Phys. 2019. V. 14. № 3. P. 33403. https://doi.org/10.1007/s11467-019-0884-5
- An J.M., Pickett W.E. // Phys. Rev. Lett. 2001. V. 86. № 19. P. 4366. https://doi.org/10.1103/PhysRevLett.86.4366
- Kortus J., Mazin I.I., Belashchenko K.D. et al. // Phys. Rev. Lett. 2001. V. 86. № 20. P. 4656. https://doi.org/10.1103/PhysRevLett.86.4656
- Choi H.J., Roundy D., Sun H. et al. // Nature. 2002. V. 418. № 6899. P. 758. https://doi.org/10.1038/nature00898
- Gribanova T.N., Minyaev R.M., Minkin V.I. // Chem. Phys. 2019. V. 522. P. 44. https://doi.org/10.1016/j.chemphys.2019.02.008
- Gribanova T.N., Minyaev R.M., Minkin V.I. // Struct. Chem. 2018. V. 29. № 1. P. 327. https://doi.org/10.1007/s11224-017-1031-y
- Gribanova T.N., Minyaev R.M., Minkin V.I. // Struct. Chem. 2017. V. 28. № 2. P. 357. https://doi.org/10.1007/s11224-016-0886-7
- Gribanova T.N., Minyaev R.M., Minkin V.I. // Mendeleev Commun. 2016. V. 26. № 6. P. 485. https://doi.org/10.1016/j.mencom.2016.11.008
- Steglenko D.V., Gribanova T.N., Minyaev R.M. // J. Phys. Chem. C. 2023. V. 127. № 31. P. 15533. https://doi.org/10.1021/acs.jpcc.3c02427
- John D., Nharangatt B., Chatanathod R. // J. Mater. Chem. C. 2019. V. 7. № 37. P. 11493. https://doi.org/10.1039/c9tc03628h
- Tang H., Ismail-Beigi S. // Phys. Rev. B. 2009. V. 80. № 13. P. 134113. https://doi.org/10.1103/PhysRevB.80.134113
- Penev E.S., Kutana A., Yakobson B.I. // Nano Lett. 2016. V. 16. № 4. P. 2522. https://doi.org/10.1021/acs.nanolett.6b00070
- Steglenko D.V., Gribanova T.N., Minyaev R.M. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 60. https://doi.org/10.1134/s0036023622601477
- Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
- Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
- Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. №. 1. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Blöchl P.E. // Phys. Rev. B. 1994. V. 50. № 24. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- Togo A., Tanaka I. // Scripta Mater. 2015. V. 108. P. 1. https://doi.org/10.1016/j.scriptamat.2015.07.021
- Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511. https://doi.org/10.1063/1.447334
- Koichi M., Fujio I. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1272. https://doi.org/10.1107/S0021889811038970
- Stokes H.T., Hatch D.M. // J. Appl. Crystallogr. 2005. V. 38. № 1. P. 237. https://doi.org/10.1107/S0021889804031528
- Emsley J. The elements. Oxford, 1991.
- Mouhat F., Coudert F.-X. // Phys. Rev. B. 2014. V. 90. № 22. P. 224104. https://doi.org/10.1103/PhysRevB.90.224104
- Lubarda V.A., Chen M.C. // J. Mech. Mater. Struct. 2008. V. 3. № 1. P. 153. https://doi.org/10.2140/jomms.2008.3.153
- Wei X., Fragneaud B., Marianetti C.A. et al. // Phys. Rev. B. 2009. V. 80. № 20. P. 205407. https://doi.org/10.1103/PhysRevB.80.205407
- Cadelano E., Palla P.L., Giordano S. et al. // Phys. Rev. B. 2010. V. 82. № 23. P. 235414. https://doi.org/10.1103/PhysRevB.82.235414
- Klintenberg M., Lebègue S., Ortiz C. et al. // J. Phys.: Condens. Matter. 2009. V. 21. № 33. P. 335502. https://doi.org/10.1088/0953-8984/21/33/335502
- Lee C., Wei X., Kysar J.W. et al. // Science. 2008. V. 321. № 5887. P. 385. https://doi.org/10.1126/science.1157996
- Kudin K.N., Scuseria G.E., Yakobson B.I. // Phys. Rev. B. 2001. V. 64. № 23. P. 235406. https://doi.org/10.1103/PhysRevB.64.235406
- Peng Q., Ji W., De S. // Comput. Mater. Sci. 2012. V. 56. P. 11. https://doi.org/10.1016/j.commatsci.2011.12.029
- Falin A., Cai Q., Santos E.J.G. et al. // Nat. Commun. 2017. V. 8. № 1. P. 15815. https://doi.org/10.1038/ncomms15815
- Cooper R.C., Lee C., Marianetti C.A. et al. // Phys. Rev. B. 2013. V. 87. № 3. P. 035423. https://doi.org/10.1103/PhysRevB.87.035423
- Bertolazz S., Brivio J., Kis A. // ACS Nano. 2011. V. 5. № 12. P. 9703. https://doi.org/10.1021/nn203879f
- Steglenko D.V., Tkachenko N.V., Boldyrev A.I. et al. // J. Comput. Chem. 2020. V. 41. № 15. P. 1456. https://doi.org/10.1002/jcc.26189
- Fedik N., Steglenko D.V., Muñoz-Castro A. et al. // J. Phys. Chem. C. 2021. V. 125. № 31. P. 17280. https://doi.org/10.1021/acs.jpcc.1c02939
- Peng Q., Wen X., De S. // RSC Adv. 2013. V. 3. № 33. P. 13772. https://doi.org/10.1039/c3ra41347k
- Şahin H., Cahangirov S., Topsakal M. et al. // Phys. Rev. B. 2009. V. 80. № 15. P. 155453. https://doi.org/10.1103/PhysRevB.80.155453
- Ding J., Xu M., Guan P.F. et al. // J. Chem. Phys. 2014. V. 140. № 6. P. 064501. https://doi.org/10.1063/1.4864106
- Sun J., Liu P., Wang M. et al. // Sci. Rep. 2020. V. 10. № 1. P. 3408. https://doi.org/10.1038/s41598-020-60416-5
补充文件
