Increasing the sensitivity of immunochromatographic assay for penicillin determination in milk due to oriented immobilization of penicillin-binding protein on the surface of colloidal gold

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Abstract — The sensitivity of competitive immunochromatographic assay (ICA) for the determination of penicillin in milk using colloidal gold (CG) conjugates with recombinant penicillin-binding protein (PBP) prepared by two methods, passive non-oriented immobilization and oriented immobilization with antibodies to the histidine tag, was compared. The detection limit of the optimized ICA with non-oriented PBP immobilization was 5 ng/mL. It was possible to achieve a detection limit of 0.3 ng/mL with visual interpretation due to antibodies to the histidine tag with the use of oriented PBP immobilization. The analysis time was 10 min. The efficiency of two PBP immobilization methods was compared. It was shown that the sensitivity of the assay increased due to an improved PBP orientation and a simultaneous decrease in the number of binding sites on the CG. Thus, targeted immobilization of specific proteins on sensor surfaces using antibodies to the histidine tag can increase the sensitivity of the assay and simultaneously decrease the amount of biospecific reagents used. This approach can be applied to the simple conjugation of recombinant proteins with a histidine tag to nanoparticles.

Texto integral

Acesso é fechado

Sobre autores

I. Maksin

MIREA – Russian Technological University (Lomonosov Institute of Fine Chemical Technologies); Rapid Bio LLC

Autor responsável pela correspondência
Email: maxinivanv@gmail.com
Rússia, 86, Vernadskogo Prospekt, 119571 Moscow; Bolshoy Boulevard., 42, b.1, 121205 Moscow

A. Kuandykova

Rapid Bio LLC

Email: maxinivanv@gmail.com
Rússia, Bolshoy Boulevard., 42, b.1, 121205 Moscow

T. Luzyanin

MIREA – Russian Technological University (Lomonosov Institute of Fine Chemical Technologies); Rapid Bio LLC

Email: maxinivanv@gmail.com
Rússia, 86, Vernadskogo Prospekt, 119571 Moscow; Bolshoy Boulevard., 42, b.1, 121205 Moscow

V. Ivanov

Rapid Bio LLC

Email: maxinivanv@gmail.com
Rússia, Bolshoy Boulevard., 42, b.1, 121205 Moscow

Y. Kirillova

MIREA – Russian Technological University (Lomonosov Institute of Fine Chemical Technologies)

Email: maxinivanv@gmail.com
Rússia, 86, Vernadskogo Prospekt, 119571 Moscow

G. Khunteev

Rapid Bio LLC

Email: maxinivanv@gmail.com
Rússia, Bolshoy Boulevard., 42, b.1, 121205 Moscow

Bibliografia

  1. Chen J., Ying G.G., Deng W.J. Antibiotic residues in food: Extraction, analysis, and human health concerns // J. Agric Food Chem. 2019. V. 67. № 27. P. 7569. https://doi.org/10.1021/acs.jafc.9b01334
  2. О безопасности пищевой продукции (ТР ТС 021/2011) [Электронный ресурс]. https://eec.eaeunion.org/comission/department/deptexreg/tr/PischevayaProd.php (9 сентября, 2024).
  3. Kharewal T., Verma N., Gahlaut A., Hooda V. Biosensors for penicillin quantification: A comprehensive review // Biotechnol. Lett. 2020. V. 42. № 10. P. 1829. https://doi.org/10.1007/s10529-020-02970-6
  4. Li H., Xu B., Wang D., Zhou Y., Zhang H., Xia W., Xu S., Li Y. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles // J. Biotechnol. 2015. V. 203. P. 97. https://doi.org/10.1016/j.jbiotec.2015.03.013
  5. Pollap A., Kochana J. Electrochemical immunosensors for antibiotic detection // Biosensors (Basel). 2019. V. 9. № 2. Article 61. https://doi.org/10.3390/bios9020061
  6. Berlina A.N., Bartosh A.V., Zherdev A.V., Eremin S.A., Dzantiev B.B. Management of factors for improving antigen–antibody interaction in lateral flow immunoassay of tetracycline in human serum samples // Biomed. Pharmacol. J. 2019. V. 12. № 1. P. 17. https://doi.org/10.13005/bpj/1609
  7. Ahmed S., Ning J., Peng D., Chen T., Ahmad I., Ali A., Lei Z., Abu bakr Shabbir M., Cheng G., Yuan Z. Current advances in immunoassays for the detection of antibiotics residues: A review // Food Agric. Immunol. 2020. V. 31. № 1. P. 268. https://doi.org/10.1080/09540105.2019.1707171
  8. Han M., Gong L., Wang J., Zhang X., Jin Y., Zhao R., Yang C., He L., Feng X., Chen Y. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk // Sens. Actuators B: Chem. 2019. V. 292. P. 94. https://doi.org/10.1016/j.snb.2019.04.019
  9. Pietschmann J., Dittmann D., Spiegel H., Krause H.J., Schröper F. A novel method for antibiotic detection in milk based on competitive magnetic immunodetection // Foods. 2020. V. 9. № 12. Article 1773. https://doi.org/10.3390/foods9121773
  10. Hemeda S.M., Sayed R.H., Hassan H., Sheima A.E., Aboul-Ella H., Soliman R. Development of colloid gold-based lateral flow immunochromatographic kits for screening and rapid detection of beta-lactams antibiotic residues in dairy milk // Adv. Anim. Vet. Sci. 2022. V. 10. № 7. P. 1616. https://doi.org/10.17582/journal.aavs/2022/10.7.1616.1622
  11. Lata K., Sharma R., Naik L., Rajput Y.S., Mann B. Lateral flow assay–based rapid detection of cephalexin in milk // J. Food Qual. 2016. V. 39. № 1. P. 64. https://doi.org/10.1111/jfq.12175
  12. Zhang X., Zhao F., Sun Y., Mi T., Wang L., Li Q., Li J., Ma W., Liu W., Zuo J., Chu X., Chen B., Han W., Mao Y. Development of a highly sensitive lateral flow immunoassay based on receptor-antibody-amorphous carbon nanoparticles to detect 22 β-lactams in milk // Sens. Actuators B: Chem. 2020. V. 321. Article 128458. https://doi.org/10.1016/j.snb.2020.128458
  13. Chen Y., Wang Y., Liu L., Wu X., Xu L., Kuang H., Li A., Xu C. A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams // Nanoscale. 2015. V. 7. № 39. P. 16381. https://doi.org/10.1039/c5nr04987c
  14. Серченя Т.С., Семижон П.А., Счесленок Е.П., Горбачева И.В., Вашкевич И.И., Свиридов О.В. Метод количественного определения активного рецептора бета-лактамных антибиотиков Blar-CTD для биоаналитического применения // Журн. прикл. биохимии и микробиол. 2023. Т. 59. № 1. C. 81. https://doi.org/10.31857/S0555109923010105 (Serchenya T.S., Semizhon P.A., Schaslionak A.P., Harbachova I.V., Vashkevich I.I., Sviridov O.V. A method for the quantitative determination of the active receptor of beta-lactam antibiotics BlaR-CTD for bioanalytical applications // Appl. Biochem. Microbiol. 2023. V. 59. № 1. P. 79. https://doi.org/10.1134/s0003683823010106)
  15. Li X., Pan Z., Li M., Jia X., Zhang S., Lin H., Liu J., Ma L. Europium chelate-labeled lateral flow assay for rapid and multiple detection of β-lactam antibiotics by the penicillin-binding protein // Anal. Methods. 2020. V. 12. № 28. P. 3645. https://doi.org/10.1039/d0ay01140a
  16. Lin H., Fang F., Zang J., Su J., Tian Q., Kumar Kankala R., Lin X. A fluorescent sensor-assisted paper-based competitive lateral flow immunoassay for the rapid and sensitive detection of ampicillin in hospital wastewater // Micromachines (Basel). 2020. V. 11. № 4. Article 431. https://doi.org/10.3390/mi11040431
  17. Li X., Wang X., Wang L., Yang T., Wang D. Duplex detection of antibiotics in milk powder using lateral-flow assay based on surface-enhanced raman spectroscopy // Food Anal. Methods. 2021. V. 14. № 1. P. 165. https://doi.org/10.1007/s12161-020-01870-9
  18. Fan R., Tang S., Luo S., Liu H., Zhang W., Yang C., He L., Chen Y. Duplex surface enhanced Raman scattering-based lateral flow immunosensor for the low-level detection of antibiotic residues in milk // Molecules. 2020. V. 25. № 22. Article 5249. https://doi.org/10.3390/molecules25225249
  19. Lu Z.Y., Chan Y.H. The importance of antibody orientation for enhancing sensitivity and selectivity in lateral flow immunoassays // Sens. Diagn. 2024. V. 3. № 10. P. 1613. https://doi.org/10.1039/D4SD00206G
  20. Кельциева О.А., Гладилович В.Д., Подольская Е.П. Металл-аффинная хроматография. Основы и применение // Научное приборостроение. 2013. Т. 23. № 1. С. 74.
  21. López-Laguna H., Voltà-Durán E., Parladé E., Villaverde A., Vázquez E., Unzueta U. Insights on the emerging biotechnology of histidine-rich peptides // Biotechnol. Adv. 2022. V. 54. Article 107817. https://doi.org/10.1016/j.biotechadv.2021.107817
  22. Zhu L., Chang Y., Li Y., Qiao M., Liu L. Biosensors based on the binding events of nitrilotriacetic acid–metal complexes // Biosensors (Basel). 2023. V. 13. № 5. Article 507. https://doi.org/10.3390/bios13050507
  23. Vallina-García R., del Mar García-Suárez M., Fernández-Abedul M.T., Méndez F.J., Costa-García A. Oriented immobilisation of anti-pneumolysin Fab through a histidine tag for electrochemical immunosensors // Biosens. Bioelectron. 2007. V. 23. № 2. P. 210. https://doi.org/10.1016/j.bios.2007.04.001
  24. Höltje J.-V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli // Microbiol. Mol. Biol. Rev. 1998. V. 62. № 1. P. 181. https://doi.org/10.1128/mmbr.62.1.181-203.1998
  25. Серченя Т.С., Горбачева И.В., О.В. Свиридов. Прямое конъюгирование пенициллинов и цефалоспоринов с белками для рецепторного анализа бета-лактамных антибиотиков // Биорг. химия. 2022. Т. 48. № 1. C. 63. https://doi.org/10.31857/s0132342322010122 (Serchenya T.S., Harbachova I.V., Sviridov O.V. Direct conjugation of penicillins and cephalosporins with proteins for receptor assays of beta-lactam antibiotics // Russ. J. Bioorg. Chem. 2022. V. 48. № 1. P. 85. https://doi.org/10.1134/s1068162022010125)
  26. Zvereva E.A., Byzova N.A., Sveshnikov P.G., Zherdev A.V., Dzantiev B.B. Cut-off on demand: Adjustment of the threshold level of an immunochromatographic assay for chloramphenicol // Anal. Methods. 2015. V. 7. № 15. P. 6378. https://doi.org/10.1039/c5ay00835b
  27. Kumar D., Mutreja I., Sykes P. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone // Nanotechnology. 2016. V. 27. № 35. Article 355601. https://doi.org/10.1088/0957-4484/27/35/355601
  28. Byzova N.A., Safenkova I.V., Slutskaya E.S., Zherdev A.V., Dzantiev B.B. Less is more: A comparison of antibody-gold nanoparticle conjugates of different ratios // Bioconjug. Chem. 2017. V. 28. № 11. P. 2737. https://doi.org/10.1021/acs.bioconjchem.7b00489
  29. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nat. Phys. Sci. 1973. V. 241. № 105. P. 20. https://doi.org/10.1038/physci241020a0
  30. Posthuma-Trumpie G.A., Korf J., Van Amerongen A. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey // Anal. Bioanal. Chem. 2009. V. 393. № 2. P. 569. https://doi.org/10.1007/s00216-008-2287-2
  31. Li J., Duan H., Xu P., Huang X., Xiong Y. Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of an immunochromatographic assay // RSC Adv. 2016. V. 6. № 31. P. 26178. https://doi.org/10.1039/c6ra03695c
  32. Byzova N.A., Zherdev A.V., Khlebtsov B.N., Burov A.M., Khlebtsov N.G., Dzantiev B.B. Advantages of highly spherical gold nanoparticles as labels for lateral flow immunoassay // Sensors. 2020. V. 20. № 12. Aritcle 3608. https://doi.org/10.3390/s20123608
  33. Khlebtsov B.N., Tumskiy R.S., Burov A.M., Pylaev T.E., Khlebtsov N.G. Quantifying the numbers of gold nanoparticles in the test zone of l ateral flow immunoassay strips // ACS Appl. Nano Mater. 2019. V. 2. № 8. P. 5020. https://doi.org/10.1021/acsanm.9b00956
  34. Дыкман Л.А., Хлебцов Н.Г. Методы химического синтеза коллоидного золота // Успехи химии. 2019. Т. 88. № 3. C. 229. http://dx.doi.org/10.1070/RCR4843?locatt=label:RUSSIAN (Dykman L.A., Khlebtsov N.G. Methods for chemical synthesis of colloidal gold // Russ. Chem. Rev. 2019. V. 88. № 3. P. 229. https://doi.org/10.1070/RCR4843)
  35. Perrault S.D., Chan W.C.W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm // J. Am. Chem. Soc. 2009. V. 131. № 47. P. 17042. https://doi.org/10.1021/ja907069u
  36. Kausaite-Minkstimiene A., Ramanaviciene A., Kirlyte J., Ramanavicius A. Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor // Anal. Chem. 2010. V. 82. № 15. P. 6401. https://doi.org/10.1021/ac100468k
  37. Song H.Y., Zhou X., Hobley J., Su X. Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy // Langmuir. 2012. V. 28. № 1. P. 997. https://doi.org/10.1021/la202734f
  38. Tripathi K., Driskell J.D. Quantifying bound and active antibodies conjugated to gold nanoparticles: A comprehensive and robust approach to evaluate immobilization chemistry // ACS Omega. 2018. V. 3. № 7. P. 8253. https://doi.org/10.1021/acsomega.8b00591

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. (a) TEM image of the obtained colloidal gold nanoparticles, (b) light absorption spectrum of colloidal gold nanoparticles, (c) histogram of the size distribution of colloidal gold nanoparticles.

Baixar (129KB)
3. Fig. 2. Curves of the dependence of the aggregation coefficient K of conjugates (a) K3-a-His and (b) K3-PSB on pH and protein concentration.

Baixar (115KB)
4. Fig. 3. MALDI-TOF mass spectra of conjugates with bovine serum albumin.

Baixar (59KB)
5. Fig. 4. Calibration curve of the dependence of the test line staining intensity on the concentration of penicillin in a milk sample using K3-PSB and K3-aHis-PSB conjugates with different amounts of penicillin-binding protein.

Baixar (96KB)
6. Fig. 5. Results of immunochromatographic determination of penicillin using conjugates KZ-PSB4 μg and KZ-PSB1 μg. The concentration of penicillin, which corresponds to the detection limit for visual interpretation of the result, is shown in bold.

Baixar (52KB)
7. Fig. 6. Results of immunochromatographic determination of penicillin using conjugates KZ-PSB1 μg, KZ-PSB0.5 μg and KZ-PSB0.2 μg. The concentration of penicillin, which corresponds to the detection limit for visual interpretation of the result, is shown in bold.

Baixar (107KB)
8. Fig. 7. Orientation of the penicillin-binding protein on the surface of gold nanoparticles with non-oriented or oriented immobilization. Due to the small size of penicillin, its effective binding to the penicillin-binding protein is expected even in the case of a hindered orientation of the latter (the active center faces the surface of the nanoparticle). In this case, the sterically hindered penicillin-binding protein will be inactive towards the BSA-antibiotic conjugate, since the conjugated ampicillin is shielded by the bulky BSA molecule.

Baixar (210KB)
9. Fig. 8. Schematic illustration of the experiment to determine the amount of unbound penicillin-binding protein after conjugation with colloidal gold or K3-a-His.

Baixar (102KB)
10. Fig. 9. The amount of penicillin-binding protein in the supernatant after incubation with K3 and K3-a-His for different times.

Baixar (120KB)
11. Fig. 10. Schematic illustration of the experiment to determine the amount of penicillin after incubation with K3-PSB1 μg and K3-a-His-PSB1 μg.

Baixar (160KB)
12. Fig. 11. Data from an experiment to determine the concentration of penicillin required to inhibit the conjugate KZ-PSB1 μg and KZ-a-His-PSB1 μg.

Baixar (129KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025