Complexities of chromato-mass spectrometric identification of products of free radical chlorination of indane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the example of the products of free radical chlorination of indane (with data for tetralin mentioned for comparison), it is shown that chromato-mass spectrometric analysis can only establish their molecular formulas, and based on this, the reaction mechanism is detailed. Refining the structure of the components requires interpreting their gas chromatographic retention indices in the form of localized additive schemes created to solve the specific task at hand. If such schemes are formed based on data from objects containing all the structural elements of the characterized compounds, they are fairly reliable. However, if this condition is not met (as in the case under consideration), the possibility of interpreting the retention indices is fundamentally preserved, but the accuracy of the estimates is significantly reduced, and the amount of preliminary calculations increases substantially. A key structural fragment of chlorinated indane derivatives, practically absent among previously characterized compounds, is the chlorine atom in the alicyclic fragment of the structure at the α-position relative to the aromatic system. Secondary chlorinated derivatives are formed as a result of dehydrochlorination of the primary reaction products, followed by chlorine addition to C=C double bonds.

Full Text

Restricted Access

About the authors

I. G. Zenkevich

St. Petersburg State University

Author for correspondence.
Email: izenkevich@yandex.ru
Russian Federation, St. Petersburg

E. V. Eliseenkov

St. Petersburg State University

Email: izenkevich@yandex.ru
Russian Federation, St. Petersburg

A. I. Ukolov

Research Institute of Hygiene, Occupational Diseases, and Human Ecology Federal Medical and Biological Agency of Russia

Email: izenkevich@yandex.ru
Russian Federation, Kuzmolovsky settlement

References

  1. The NIST Mass Spectral Library (NIST2023/2020/2017/EPA/NIH EI MS Library, 2023 Release). Software/Data Version; NIST Standard Reference Database, Number 69, May 2023. National Institute of Standards and Technology, Gaithersburg, MD 20899: http://webbook.nist.gov (дата обращения: октябрь 2023 г.).
  2. Derivatization of analytes in chromatography: General aspects / Encyclopedia of Chromatography / Ed. Cazes J. 3rd Ed. New York: Taylor & Francis, 2010. V. 1. P. 562.
  3. Amines, amino acids, amides and imides: derivatization for GC analysis / Encyclopedia of Chromatography / Ed. Cazes J. 3rd Ed. New York: Taylor & Francis, 2010. V. 1. P. 50.
  4. Зенкевич И.Г. Систематизация газохроматографических параметров триметилсилильных производных аминокислот // Журн. аналит. химии. 2024. Т. 79. № 7. (Zenkevich I.G. // J. Anal. Chem. 2024. V. 79. № 7.)
  5. Pompe M., Novic M. Prediction of gas-chromatographic retention indices using topological descriptors // J. Chem. Inf. Comput. Sci. 1999. V. 39. № 1. P. 59. https://doi.org/10.1021/ci980036z
  6. Heberger K. Quantitative structure – (chromatographic) retention relationships (QSRR) // J. Chromatogr. A. 2007. V. 1158. P. 273. https://doi.org/10.1016/chroma.2007.03.108
  7. Matyshin D.D., Sholokhova A.Yu., Buryak A.K. Deep learning based prediction of gas chromatographic retention indices for a wide variety of polar and mid-polar liquid stationary phases // Int. J. Mol. Sci. 2021. V. 22. P. 13. https://doi.org/10.3390/ijms22179194
  8. Idroes R., Noviandy T.R., Maulana A., Syhendra R., Sasmita N.R., Muslem M., Idroes G.M., Kemala P., Irvanizam I. Application of genetic algorithm – multiple linear regression and artificial neural network determination for prediction of Kovats retention index // Int. Rev. Model. Simulat. 2021. V. 14. № 2. P. 137. https://doi.org/10.15866/iremos.v14i2.20460
  9. Qu C., Schneider B.I., Kearsley A.J., Keyrouz W., Allison T.C. Predicting Kovats retention indices using graph neural networks // J. Chromatogr. A. 2021. V. 1646. Article 462100. https://doi.org/10.1016/j. chroma.2021.462100
  10. Stein S.E., Babushok V.I., Brown R.L., Linstrom P.J. Estimation of Kovats retention indices using group contribution // J. Chem. Inf. Model. 2007. V. 47. P. 975. https://doi.org/10.1021/ci600548y
  11. Зенкевич И.Г., Елисеенков Е.В., Касаточкин А.Н. Идентификация продуктов органических реакций при отсутствии аддитивности хроматографических индексов удерживания. Хлорпроизводные метил-трет-бутилкетона // Журн. структ. химии. 2013. Т. 54. № 3. С. 453. doi: 10.1134/S0022476613030050 (Zenkevich I.G., Eliseenkov E.V., Kasatochkin A.N. Identification of organic reaction products in the absence of additivity of chromatographic retention indices. Chloro derivatives of methyl-tert-butyl ketone // J. Struct. Chem. 2013. V. 54. № 3. P. 505.)
  12. Zenkevich I.G., Eliseenkov E.V., Kasatochkin A.N. Chromatographic identification of cyclohexane chlorination products by use of an additional scheme for the prediction of retention indices // Chromatographia. 2009. V. 70. № 5/6. P. 839.
  13. Зенкевич И.Г. Интерпретация газохроматографических индексов удерживания для установления структур изомерных продуктов радикального хлорирования алкилароматических углеводородов // Журн. орг. химии. 2001. Т. 37. № 2. С. 283. (Zenkevich I.G. Interpretation of retention indices in gas chromatography for establishing the structures of isomeric products of alkylarenes radical chlorination // Russ. J. Org. Chem. 2001. V. 37. № 2. P. 270.)
  14. Zenkevich I.G., Eliseenkov E.V., Kasatochkin A.N., Zhakovskaya Z.A., Khoroshko L.O. Gas chromatographic identification of chlorination products of aliphatic ketones // J. Chromatogr. A. 2011. V. 1218. P. 3291. https://doi.org/10.1016/j. chroma.2010.12.056
  15. Зенкевич И.Г., Елисеенков Е.В., Касаточкин А.Н., Уколов А.И. Хромато-масс-спектрометрическая идентификация продуктов регионеселективных органических реакций. Хлорпроизводные диалкиловых эфиров // Масс-спектрометрия. 2011. Т. 8. № 2. С. 119. (Zenkevich I.G., Eliseenkov E.V., Kasatochkin A.N., Ukolov A.I. Identification of the products of non-regioselective organic reactions by chromatography – mass spectrometry. Chloro derivatives of dialkyl ethers // J. Anal. Chem. 2011. V. 66. № 14. P. 1445. https://doi.org/10.1134/S1061934811140218)
  16. Cady G.H., Naughton J.M., Dexter T.H. Chlorine (I) compounds / Inorganic Syntheses / Ed. Moeller T. New York: McGraw-Hill, 1957. V. 5. P. 156. https://doi.org/10.1002/9780470132364
  17. Raner K.D., Lusztyk J., Ingold K.U. Kinetic analysis of alkane polychlorination with moilecular chlorine. Chlorine atom/monochloride geminate pairs and the effect of reactive cage walls on the competition between monochloride rotation and chlorine atom escape // J. Am. Chem. Soc. 1988. V. 110. № 11. P. 3519. https://doi.org/10.1021/ja00219a028
  18. Russell G.A., Ito A., Hendry D.G. Solvent effects in the reaction of free radicals and atoms. VIII. The photochlorination of aralkyl hydrocarbons // J. Am. Chem. Soc. 1963. V. 85. P. 2976.
  19. Fujita T. The dipole moments and molecular structure of ac-trans-dihalotetralins // J. Am. Chem. Soc. 1957. V. 79. № 10. P. 2471. https://doi.org/10.1021/ja01567a033
  20. Москвин Л.Н., Зенкевич И.Г., Карцова Л.А. Понятие “селективность” и его содержание в методах разделения веществ // Журн. аналит. химии. 2004. Т. 59. № 7. С. 697. doi: 10.1023/B:JANC.0000035270.18330.87 (Moskvin L.A., Zenkevich I.G., Kartrova L.A. Concept of selectivity and its meaning in analytical separation techniques // J. Anal. Chem. 2004. V. 59. № 7. P. 617.)
  21. Novrocik J., Komarek K., Poskocil J. Gas-liquid chromatography of some o-xylene, indane and tetralin derivatives // J. Chromatogr. 1976. V. 124. P. 73. https://doi.org/10.1016/S0021-9673(00)87841-3
  22. Novrocik J., Poskocil J., Cepciansky I. Chlorination of indane, o-xylene and tetraline // Collect. Czech. Chem. Commun. 1978. V. 43. № 6. P. 1488. https://doi.org/10.1135/cccc19781488
  23. Лебедев А.Т. Масс-спектрометрия в органической химии. М.: Техносфера, 2015. 704 с.
  24. Zenkevich I.G. Reciprocally unambiguous conformity between GC retention indices and boiling points within two- and multidimensional taxonomic groups of organic compounds // J. High Resolut. Chromatogr. Chromatogr. Commun. 1998. V. 21. № 10. P. 565.
  25. Зенкевич И.Г. Особенности линейной корреляции газохроматографических индексов удерживания соединений различных таксономических групп // Журн. аналит. химии. 2023. Т. 78. № 6. С. 528. https://doi.org/10.1134/S1061934823040160 (Zenkevich I.G. Linear correlation of the gas chromatographic retention indices of compounds from various taxonomic groups // J. Anal. Chem. 2023. V. 78. № 6. P. 766.)
  26. Zenkevich I.G. New approach in joint interpretation of mass spectrometric and gas chromatographic data // Chemometr. Intel. Lab. Systems. 2004. V. 72. P. 233. https://doi.org/10.1016/j.chemolab.2003.12.016
  27. Zenkevich I.G., Moeder M., Koeller G., Schrader S. Using new structurally related additive schemes in the precalculation of GC retention indices of polychlorinated hydroxybiphenyls on HP-5 stationary phase // J. Chromatogr. A. 2004. V. 1025. P. 227. https://doi.org/10.1016/j.chroma.2003.10.16
  28. Зенкевич И.Г., Уколов А.И. Совместная интерпретация хроматографической и масс-спектрометрической информации при идентификации продуктов конденсации карбонильных соединений // Масс-спектрометрия. 2011. Т. 8. № 4. С. 264. https://doi.org/10.1134/S1061934812130114 (Zenkevich I.G., Ukolov A.I. Combined interpretation of chromatographic and mass spectral information in identifying condensation products of carbonyl compounds // J. Anal. Chem. 2012. V. 67. № 13. P. 39.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис.1

Download (160KB)
3. Рис. 1.1

Download (27KB)
4. Рис.1.2

Download (27KB)
5. Рис.1.3.

Download (29KB)
6. Рис.1.4.

Download (22KB)
7. Рис.1.5.

Download (23KB)
8. Схема 1. Образование продуктов последовательного хлорирования тетралина.

Download (34KB)
9. Схема 2. Фрагментация молекулярных ионов тетралинов по типу ретрореакции Дильса–Альдера.

Download (35KB)
10. Схема 3. Схематическое изображение структурного фрагмента, хуже всего представленного среди соединений, охарактеризованных газохроматографическими индексами удерживания.

Download (25KB)
11. Схема 4. “Сборка” индановых структур из ароматического и ациклических фрагментов.

Download (29KB)

Copyright (c) 2024 Russian Academy of Sciences