Gas chromatographic analysis of γ-hexachlorocyclohexane distribution in agricultural crops

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study focuses on investigating the distribution of γ-hexachlorocyclohexane in turnip and beetroot among their fruits, stems, and peels. The sample preparation method, recommended by GOST, is supplemented by using liquid nitrogen for more thorough grinding and cell disruption of plants. It has been found that the application of liquid nitrogen, while keeping other experimental parameters constant, leads to a 2-3-fold increase in the detectable amount of pesticide. It was established that the distribution of γ-HCH in plants is uneven: the highest concentration of the pesticide was found in the peel, while the stems showed the lowest γ-HCH content. It is shown that γ-HCH accumulates better in the peel of beetroot compared to turnip peel, with the opposite pattern observed for the stems. The accumulation of γ-HCH in the fruits of these root vegetables is similar in magnitude. The obtained data can be valuable for analytical quality control services of agricultural products.

Full Text

Restricted Access

About the authors

D. E. Musabirov

Ufa Research Institute of Occupational Medicine and Human Ecology; Ufa University of Science and Technology

Author for correspondence.
Email: 30102000@rambler.ru
Russian Federation, Ufa; Ufa

R. A. Daukaev

Ufa Research Institute of Occupational Medicine and Human Ecology

Email: 30102000@rambler.ru
Russian Federation, Ufa

D. O. Karimov

Ufa Research Institute of Occupational Medicine and Human Ecology

Email: 30102000@rambler.ru
Russian Federation, Ufa

V. Y. Guskov

Ufa University of Science and Technology

Email: 30102000@rambler.ru
Russian Federation, Ufa

References

  1. Kaur R., Mavi G.K., Raghav S., Khan, I. Pesticides classification and its impact on environment // Int. J. Curr. Microbiol. Appl. Sci. 2019. V. 8. № 3. P. 1889. https://doi.org/10.20546/ijcmas.2019.803.224
  2. Gong P., Xu H., Wang C., Chen Y., Guo L., Wang X. Persistent organic pollutant cycling in forests // Nat. Rev. Earth Environ. 2021. V. 2. № 3. P. 182. https://doi.org/10.1038/s43017-020-00137-5
  3. Walker K., Vallero D.A., Lewis R.G. Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment // Environ. Sci. Technol. 1999. V. 33. № 24. P. 4373.
  4. Wondimu K.T., Geletu A.K. Residue analysis of selected organophosphorus and organochlorine pesticides in commercial tomato fruits by gas chromatography mass spectrometry // Heliyon. 2023. V. 9. № 3. Article e14121. https://doi.org/10.1016/j.heliyon.2023.e14121
  5. Zuo W., Lin Q., Liu X., Lv L., Zhang C., Wu S., et al. Spatio-temporal distribution of organochlorine pesticides in agricultural soils of southeast China during 2014-2019 // Environ Res. 2023. V. 232. Article 116274. https://doi.org/10.1016/j.envres.2023.116274
  6. Adeleye A.O., Sosan M.B., Oyekunle J.A.O. Dietary exposure assessment of organochlorine pesticides in two commonly grown leafy vegetables in South-western Nigeria // Heliyon. 2019. V. 5. № 6. Article e01895. https://doi.org/10.1016/j.heliyon.2019.e01895
  7. Abhilash P.C., Jamil S., Singh V., Singh A., Singh N., Srivastava S.C. Occurrence and distribution of hexachlorocyclohexane isomers in vegetation samples from a contaminated area // Chemosphere. 2008. V. 72. № 1. P. 79. https://doi.org/10.1016/j.chemosphere.2008.01.056
  8. Mackay D., Shiu W.Y., Ma K.C. Illustrated handbook of physical-chemical properties of environmental fate for organic chemicals // CRC Press. 2006. P. 4216. https://doi.org/10.1201/9781420044393
  9. Mattina M.J., Iannucci-Berger W., Dykas L., Pardus J. Impact of long-term weathering, mobility, and land use on chlordane residues in soil // Environ. Sci. Technol. 1999. V. 33. № 14. P. 2425.
  10. Willett K.L., Ulrich E.M., Hites R.A. Differential toxicity and environmental fates of hexachlorocyclohexane isomers // Environ. Sci. Technol. 1998. V. 32. № 15. P. 2197. https://doi.org/10.1021/es9708530
  11. Afful S., Anim A.K., Serfor-Armah Y. Spectrum of organochlorine pesticide residues in fish samples from the Densu Basin // Res. J. Environ. Earth. Sci. 2010. V. 2. № 3. P. 133.
  12. Ododo M.M., Wabalo B.K. Polychlorinated biphenyls (PCBs) and their impacts on human health: A review // J. Environ. Pollut. Hum. Health. 2019. V. 7. № 2. P. 73.
  13. Gonzalez M., Miglioranza K.S., Aizpún de Moreno J.E., Moreno V.J. Occurrence and distribution of organochlorine pesticides (OCPs) in tomato (Lycopersicon esculentum) crops from organic production // J. Agric. Food Chem. 2003. V. 51. № 5. P. 1353. https://doi.org/10.1021/jf025892w
  14. Zhang A., Luo W., Sun J., Xiao H., Liu W. Distribution and uptake pathways of organochlorine pesticides in greenhouse and conventional vegetables // Sci. Total. Environ. 2015. V. 505. P. 1142. https://doi.org/10.1016/j.scitotenv.2014.11.023
  15. Mikes O., Cupr P., Trapp S., Klanova J. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus) // Environ. Pollut. 2009. V. 157. № 2. P. 488. https://doi.org/10.1016/j.envpol.2008.09.007
  16. Simonich S.L., Hites R.A. Organic pollutant accumulation in vegetation // Environ. Sci. Technol. 1995. V. 29. № 12. P. 2905. https://doi.org/10.1016/j.scitotenv.2014.11.023
  17. ГОСТ 30349-96. Методы определения остаточных количеств хлорорганических пестицидов. М.: Стандартинформ, 2008. C. 12.
  18. ГОСТ ISO 14507-2015. Качество почвы. Предварительная подготовка проб для определения органических загрязняющих веществ. М.: Стандартинформ, 2019. C. 16.
  19. Albero B., Tadeo J.L., Pérez R.A. Ultrasound-assisted extraction of organic contaminants // Trends Anal. Chem. 2019. V. 118. P. 739. https://doi.org/10.1016/j.trac.2019.07.007
  20. Sajid M., Woźniak M.K., Płotka-Wasylka J. Ultrasound-assisted solvent extraction of porous membrane packed solid samples: A new approach for extraction of target analytes from solid samples // Microchem. J. 2019. V. 144. P. 117. https://doi.org/10.1016/j.microc.2018.08.059

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Зависимость суммарной полноты извлечения от исходной концентрации.

Download (314KB)

Copyright (c) 2024 Russian Academy of Sciences