Determination of trace element composition and u-pb dating of apatite by inductively coupled plasma mass spectrometry and laser ablation on NexION 300S with NWR 213 accessory

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The trace element composition and isotope ratios of Pb/U, Pb/Th and Pb/Pb in apatite were determined by inductively coupled plasma mass spectrometry and laser ablation (LA) on a NexION 300S device with a NWR 213 laser ablation accessory, and the procedure for processing experimental data was described. The optimal performance parameters of the mass spectrometer and the laser attachment were determined, including in determining the trace element composition and U/Pb dating from a single crater with a size of 50 μm or more. Standard synthetic glasses NIST SRM-612, -610 were used to determine the trace element composition of apatite; reference samples (RS) were used to measure isotope ratios – Durango, Mun Mad and Mud Tank apatites analyzed in laboratories in different countries. According to scanning electron microscopy data, the shape of laser ablation craters in apatite RS grains was analyzed; significant grain heterogeneity in the content of matrix and impurity elements was shown. The metrological characteristics of the methods for the measurement period 2021-2023 are presented. The repeatability of measuring the isotope ratios of 206Pb/238U and 208Pb/232Th is 0.54 and 0.72, 7.5 and 14.3, 1.5 and 4.4% for Mun Mad, Durango, Mud Tank, respectively. The variations in REE content in the reference samples (sr) are 11-24, 5-13, 0.3–7% for Mun Mad, Durango, Mud Tank, respectively. The dating of apatite OS within the limits of uncertainty corresponds to those obtained in world laboratories. The methods were tested in the analysis of a number of apatite samples from Ural sites.

全文:

受限制的访问

作者简介

M. Chervyakovskaya

Institute of Geology and Geochemistry Ural Branch of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: zaitseva.mv1991@gmail.com
俄罗斯联邦, Ekaterinburg, 620110

V. Chervyakovskiy

Institute of Geology and Geochemistry Ural Branch of Russian Academy of Sciences

Email: zaitseva.mv1991@gmail.com
俄罗斯联邦, Ekaterinburg, 620110

A. Pupyshev

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: zaitseva.mv1991@gmail.com
俄罗斯联邦, Ekaterinburg, Russia , 620002

S. Votyakov

Institute of Geology and Geochemistry Ural Branch of Russian Academy of Sciences

Email: zaitseva.mv1991@gmail.com
俄罗斯联邦, Ekaterinburg, 620110

参考

  1. Pan Y.M., Fleet M.E. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors / Phosphates: Geochemical, Geobiological, and Materials Importance. Reviews in Mineralogy & Geochemistry. 2002. V. 48. P. 13.
  2. Poitrasson F., Hanchar J.M., Schaltegger U. The current state and future of accessory mineral research // Chem. Geol. 2002. V. 191. P. 3.
  3. Belousova E.A., Griffin W.L., O’Reilly S., Fisher N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type // J. Geochem. Explor. 2002. V. 76. P. 45.
  4. Chu M.F., Wang K.L., Griffin W.L., Chung S.L., O’Reilly S.Y., Pearson N.J., Lizuka Y. Apatite composition: Tracing petrogenetic processes in Transhimalayan granitoids // J. Petrol., 2009. V. 50. P. 1829.
  5. Spear F.S., Pyle J.M. Apatite, monazite, and xenotime in metamorphic rocks / Phosphates: Geochemical, Geobiological, and Materials Importance. Reviews in Mineralogy & Geochemistry. 2002. V. 48. P. 293.
  6. Kohn M.J., Penniston-Dorland S. Diffusion: Obstacles and opportunities in petrochronology // Rev. Mineral. Geochem. 2018. V. 83. № 1. P. 103.
  7. Engi M., Lanari P., Kohn M.J. Significant ages. An introduction to petrochronology // Rev. Mineral. Geochem. 2017. V. 83. № 1. P. 1.
  8. Kylander-Clark A.R. C. Petrochronology by laser-ablation inductively coupled plasma mass spectrometry // Rev. Mineral. Geochem. 2017. V. 83. № 1. P. 183.
  9. Liu Y.-Sh., Hu Z.Ch., Li M., Gao Sh. Applications of LA-ICP-MS in the elemental analyses of geological samples // Chin. Sci. Bull. 2013. V. 58. № 32. P. 3863.
  10. Black L.P., Kamo S.L., Allen Ch. L., Davis D.W., Aleinikoff J.N., Valley J.W., Mundif R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis Ch. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace- element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards // Chem. Geol. 2004. V. 205. № 1-2. P. 115.
  11. Jackson S. Calibration strategies for elemental by LA–ICP–MS / Laser Ablation–ICP–MS in the Earth Sciences. 2008. V. 40. P. 169.
  12. Hager J.W. Elemental analysis of solids using laser-sampling inductively coupled plasma-mass spectrometry / Optical Spectroscopic Instrumentation and Techniques for the 1990s: Applications in Astronomy, Chemistry, and Physics. 1990. № 1318. P. 166.
  13. Jackson S.E. The application of laser- ablation microprobe inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals // Can. Mineral. 1992. V. 30. № 4. P. 1049.
  14. Oosthuyzen E.J., Burger A.J. The suitability of apatite as an age indicator by the uranium-lead isotope method // Earth Planet. Sci. Lett. 1973. V. 18. P. 29.
  15. Chew D.M., Sylvester P.J., Tubrett M.N. U–Pb and Th–Pb dating of apatite by LA– ICPMS // Chem. Geol. 2011. V. 280. P. 200.
  16. Pochon A., Poujol M., Gloaguen E., Branquet Y., Cagnard F., Gumiaux Ch., Gapais D. U-Pb LA-ICP-MS dating of apatite in mafc rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France) // Am. Mineral. 2016. V. 101. P. 2430.
  17. Thomson S.N., Gehrels G.E., Ruiz J., Buchwaldt R. Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICPMS // Geochem. Geophys. Geosyst. 2012. V. 13. Q0AA21.
  18. Ризванова Н.Г., Скублов С.Г., Черемазова Е.В. Возраст гидротермальных процессов в центрально-иберийской зоне (Испания) по данным U-Pb датирования касситерита и апатита // Записки Горного института. Геология. 2017. Т. 225. С. 275. (Rizvanova N.G., Skublov S.G., Cheremazova E.V. Age of hydrothermal processes in the central iberian zone (Spain) according to U-Pb dating of cassiterite and apatite // J. Mining Inst. 2017. V. 225. P. 275.)
  19. Kosler J., Fonneland H., Sylvester P., Tubrett M., Pedersen R.B. U-Pb dating of detrital zircons for sediment provenance studies – A comparison of LA-ICPMS and SIMS techniques // Chem. Geol. 2002 V. 182. №. 2-4. P. 605.
  20. Stacey J.S., Kramers J.D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth Planet. Sci. Lett. 1975. V. 26. №. 2. P. 207.
  21. Tera F., Wasserburg G.J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial lead in lunar rocks // Earth Planet. Sci. Lett. 1972. V. 14. P. 281.
  22. Jochum K.P., Stoll B. Reference materials for elemental and isotopic analysis / Mineralogical Association of Canada, 2008. V. 40. P. 147.
  23. Pearce N.J.G., Perkins W.T., Westgate J.A., Gorton M.P., Jackson S.E., Neal C.R., Chenery S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials // Geostand. Newsl. 1997. V. 21. P. 115.
  24. McDowell F.W., McIntosh W.C., Farley K.A. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard // Chem. Geol. 2005. V. 214. P. 249.
  25. Cochrane R., Spikings R.A., Chew D., Wotzlaw J.-F., Chiaradia M., Tyrrell S., Schaltegger U., Van der Lelij R. High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite // Geochim. Cosmochim. Acta. 2014. V. 127. P. 39.
  26. Chew D.M., Petrus J.A., Kamber B.S. U–Pb LA-MC-ICP-MS dating using accessory mineral standards with variable common Pb // Chem. Geol. 2014. V. 363. P. 185.
  27. Yang Y.-H., Wu F.-Y., Yang J.-H., Chew D.M., Xie L.-W., Chu Zh.-Y., Zhang Y.-B., Huang Ch. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology // Chem. Geol. 2014. V. 385. P. 35.
  28. Sun Y., Wiedenbeck M., Joachimski M.M., Beier C., Kemner F., Weinzierl C. Chemical and oxygen isotope composition of gem-quality apatites: Implications for oxygen isotope reference materials for secondary ion mass spectrometry (SIMS) // Chem. Geol. 2016. V. 440. P. 164.
  29. Ryan C.G., Griffin W.L. GLITTER User’s manual. p.72.
  30. Norman M.D., Pearson N.J., Sharma A.L., Griffin W.L. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses // Geostand. Newsl. 1996. V. 20. P. 247.
  31. Kooijman E., Berndt J., Mezger K. U-Pb dating of zircon by laser ablation ICP-MS: recent improvements and new insights // Eur. J. Mineral. 2012. V. 24. P. 5.
  32. https://www.originlab.com/origin#Introduction (дата обращения 20.02.2024).
  33. Vermeesch P. IsoplotR: A free and open toolbox for geochronology // Geosci. Front. 2018. V. 9. P. 1479.
  34. Gawęda A., Szopa K., Chew D. LA-ICP-MS U-Pb dating and ree patterns of apatite from the Tatra mountains, Poland as a monitor of the regional tectonomagmatic activity // Geochronometria. 2014. V. 41. № 4. P. 306.
  35. Apen F.E., Wall C.J., Cottle J.M., Schmitz M.D., Kylander-Clark A.R. C., Seward G.G. E. Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry // Chem. Geol. 2022. V. 590. № 120689. P. 1.
  36. Taylor S.R., McLennan S.M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985. 312 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependences of the measurement error of the 206Pb/238U isotopic ratio (σ, %) in the comparison samples of apatite Mun Mad (1), Mud Tank (2), Durango (3) on the operational parameters of the laser attachment: the size of the laser spot (a) and the laser pulse repetition rate (b).

下载 (156KB)
3. Fig. 2. Dependences of the elemental fractionation parameter η in the comparison samples of apatite Mun Mad (I), Mud Tank (II) and Durango (III) on the laser spot size (a), energy density (b) and laser pulse repetition rate (c, d) with a laser spot size of 50 (c), 25 μm (d) and images in secondary electrons on a scanning electron microscope of ablation craters with numbers corresponding to the points in figures (a)–(d). For clarity and analysis of the crater shape, the tilt angle of the scanning electron microscope stage is about 7o.

下载 (432KB)
4. Fig. 3. Typical time dependences of signals (imp/s) from isotopes of elements Pb, U, Th, Ca, Hg and the values ​​of the ratios 206Pb/238U (1), 208Pb/232Th (2) in the comparison samples of apatite Mun Mad (a), Durango (b), Mud Tank (c). Black vertical dotted lines are the moments of switching the laser on and off; green dotted lines are a schematic representation of the approximation of the time dependences of isotope ratios and the calculation of the intersection point of the regression line with the ordinate axis.

下载 (572KB)
5. Fig. 4. 206Pb/238U versus 207Pb/235U concordia diagram for the Mun Mad (a), Durango (b) and Mud Tank (c) apatite comparison samples adjusted by the Stacey–Kramers model. White ellipses are weighted averages; N is the number of measurements.

下载 (301KB)
6. Fig. 5. Heterogeneity of the distribution of the relative standard deviation (%) of the trace element content in the comparison samples of apatite Mun Mad (1), Mud Tank (2) and Durango (3).

下载 (106KB)
7. Fig. 6. Distribution of REE, normalized to the chondrite reservoir C1 [36], in the comparison samples of apatite Mun Mad (a), Durango (b), Mud Tank (c). Red lines – according to the Mehlem microelement analysis method; black – according to the combined Mehlem-Isot method; green – boundary values ​​of content/chondrite for the comparison sample of apatite Durango according to the GeoREM database; blue – values ​​of content/chondrite for the comparison sample of apatite Mun Mad according to the data [27].

下载 (208KB)
8. Fig. 7. REE contents normalized to the chondrite reservoir C1 in the comparison samples of apatite Mun Mad (a), Durango (b), Mud Tank (c), obtained using the Mehlem microelement analysis method and the combined Mehlem-isot method. Error – 1σ; inserts – areas of low REE contents.

下载 (214KB)

版权所有 © Russian Academy of Sciences, 2024