Recombinase polymerase and loop isothermal amplification in DNA diagnostics of infectious diseases

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Рекомбиназная полимеразная и петлевая изотермическая амплификация может быть проведена во внелабораторных условиях, что делает эти методы перспективными для разработки экспресс-тестов для ДНК-диагностики инфекционных заболеваний человека, а также сельскохозяйственных животных и растений в формате оказания медицинской помощи на месте (англ. “point-of-care” testing) или полевой детекции (англ. “in-field” detection). В обзоре рассмотрены основные принципы, на которых основаны данные методы, а также их современное состояние с акцентом на неинструментальные методы регистрации результата изотермической амплификации с помощью колориметрии и иммунохроматографических тест-полосок. Подробно освещены подходы к повышению селективности изотермической амплификации путём её объединения с CRISPR/Cas-детекцией или путём объединения двух методов по принципу гнездовой амплификации. 

Texto integral

Acesso é fechado

Sobre autores

L. Kurbatov

Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича

Email: lenasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121

K. Ptitsyn

Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича

Email: lenasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121

S. Khmeleva

Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича

Email: lenasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121

S. Radko

Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича

Email: lenasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121

A. Lisitsa

Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича; Тюменский государственный университет

Email: enasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121; ул. Володарского, 6, Тюмень, 625003

E. Suprun

Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича; Московский государственный университет имени М.В. Ломоносова

Autor responsável pela correspondência
Email: lenasuprun@mail.ru

химический факультет

Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121; Ленинские горы, 1, стр. 3, ГСП-1, Москва, 119991

Bibliografia

  1. Erdmann V.A., Jurga S., Barciszewski J. RNA and DNA Diagnostics. N.Y.: Springer, 2015. P. 359.
  2. Schmitz J.E., Stratton C.W., Persing D.H., Tang Y.W. Forty years of molecular diagnostics for infectious diseases // J. Clin. Microbiol. 2022. V. 60. № 10. Article e0244621.doi: 10.1128/jcm.02446-21
  3. Rolfs A., Schuller I., Finckh U., Weber-Rolfs I. PCR: Clinical Diagnostics and Research. N.Y.: Springer, 2011. P. 386.
  4. Abel G. Current status and future prospects of point-of-care testing around the globe // Expert Rev. Mol. Diagn. 2015. V. 15. № 7. P. 853. doi: 10.1586/14737159.2015.1060126
  5. Fernandes R.S., de Oliveira Silva J., Gomes K.B., Azevedo R.B., Townsend D.M., de Paula Sabino A., Branco de Barros A.L. Recent advances in point of care testing for COVID-19 detection // Biomed. Pharmacother. 2022. V. 153. Article 113538. doi: 10.1016/j.biopha.2022.113538
  6. De Felice M., De Falco M., Zappi D., Antonacci A., Scognamiglio V. Isothermal amplification-assisted diagnostics for COVID-19 // Biosens. Bioelectron. 2022. V. 205. Article 114101.doi: 10.1016/j.bios.2022.114101
  7. Vidic J., Vizzini P., Manzano M., Kavanaugh D., Ramarao N., Zivkovic M., Radonic V., Knezevic N., Giouroudi I., Gadjanski I. Point-of-need DNA testing for detection of foodborne pathogenic bacteria // Sensors (Basel). 2019. V. 19. № 5. P. 1100. doi: 10.3390/s19051100
  8. Baldi P., La Porta N. Molecular approaches for low-cost point-of-care pathogen detection in agriculture and forestry // Front. Plant Sci. 2020. V. 11. Article 570862.doi: 10.3389/fpls.2020.570862
  9. Demetria C., Kimitsuki K., Yahiro T., Saito N., Hashimoto T., Khan S., Chu M.Y.J., Manalo D., Mananggit M., Quiambao B., Nishizono A. Evaluation of a real-time mobile PCR device (PCR 1100) for the detection of the rabies gene in field samples // Trop. Med. Health. 2023. V. 51. № 1. P. 17.doi: 10.1186/s41182-023-00501-3
  10. Nguyen P.Q.M., Wang M., Ann Maria N., Li A.Y., Tan H.Y., Xiong G.M., Tan M.M., Bhagat A.A.S., Ong C.W.M., Lim C.T. Modular micro-PCR system for the onsite rapid diagnosis of COVID-19 // Microsyst. Nanoeng. 2022. V. 8. P. 82.doi: 10.1038/s41378-022-00400-3
  11. Jiang H., Li Y., Lv X., Deng Y., Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection // Talanta. 2023. V. 260. Article 124645.doi: 10.1016/j.talanta.2023.124645
  12. Bodulev O.L., Sakharov I.Y. Isothermal nucleic acid amplification techniques and their use in bioanalysis // Biochemistry (Moscow). 2020. V. 85. № 2. P. 147. doi: 10.1134/S0006297920020030
  13. Ivanov A.V., Safenkova I.V., Zherdev A.V., Dzantiev B.B. The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens // Plants (Basel). 2021. V. 10. № 11. Article 2424. doi: 10.3390/plants10112424
  14. Wong Y.P., Othman S., Lau Y.L., Radu S., Chee H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms // J. Appl. Microbiol. 2018. V. 124. № 3. P. 626. doi: 10.1111/jam.13647
  15. Oliveira B.B., Veigas B., Baptista P.V. Isothermal amplification of nucleic acids: The race for the next “Gold Standard” // Front. Sens. 2021. V. 2. Article 752600.doi: 10.3389/fsens.2021.752600
  16. Torres C., Vitalis E.A., Baker B.R., Gardner S.N., Torres M.W., Dzenitis J.M. LAVA: An open-source approach to designing LAMP (loop-mediated isothermal amplification) DNA signatures // BMC Bioinformatics. 2011. V. 12. P. 240.doi: 10.1186/1471-2105-12-240
  17. Jia B., Li X., Liu W., Lu C., Lu X., Ma L., Li Y.Y., Wei C. GLAPD: Whole genome based LAMP primer design for a set of target genomes // Front. Microbiol. 2019. V. 10. P. 2860. doi: 10.3389/fmicb.2019.02860
  18. Higgins M., Ravenhall M., Ward D., Phelan J., Ibrahim A., Forrest M.S., Clark T.G., Campino S. PrimedRPA: Primer design for recombinase polymerase amplification assays // Bioinformatics. 2019. V. 35. № 4. P. 682.doi: 10.1093/bioinformatics/bty701
  19. Yuan B., Yuan C., Li L., Long M., Chen Z. Application of the CRISPR/Cas system in pathogen detection: A review // Molecules. 2022. V. 27. № 20. Article 6999. doi: 10.3390/molecules27206999
  20. García-Bernalt Diego J., Fernández-Soto P., Muro A. The future of point-of-care nucleic acid amplification diagnostics after COVID-19: Time to walk the walk // Int. J. Mol. Sci. 2022. V. 23. № 22. Article 14110. doi: 10.3390/ijms232214110
  21. Ivanov A.V., Safenkova I.V., Drenova N.V., Zherdev A.V., Dzantiev B.B. Comparison of biosensing methods based on different isothermal amplification strategies: A case study with Erwinia amylovora // Biosensors (Basel). 2022. V. 12. № 12. Article 1174. doi: 10.3390/bios12121174
  22. Song J., Liu C.C., Mauk M.G., Rankin S.C., Lok J.B., Greenberg R.M., Bau H.H. Two-stage isothermal enzymatic amplification for concurrent multiplex molecular detection// Clin. Chem. 2017. V. 63. № 3. P. 714. doi: 10.1373/clinchem.2016.263665
  23. Piepenburg O., Williams C.H., Stemple D.L., Armes N.A. DNA detection using recombination proteins // PLoS Biol. 2006. V. 4. № 7. Article e204. doi: 10.1371/journal.pbio.0040204
  24. Lobato I.A., O’Sullivan C.K. Recombinase polymerase amplification: Basics, applications and recent advances // Trends Anal. Chem. 2018. V. 98. P. 19. doi: 10.1016/j.trac.2017.10.015
  25. Higgins M., Stringer O.W., Ward D., Andrews J.M., Forrest M.S., Campino S., Clark T.G. Characterizing the impact of primer-template mismatches on recombinase polymerase amplification // J. Mol. Diagn. 2022. V. 24. № 11. P. 1207. doi: 10.1016/j.jmoldx.2022.08.005.
  26. Yang Z., Le J.T., Hutter D., Bradley K.M., Overton B.R., McLendon C., Benner S.A. Eliminating primer dimers and improving SNP detection using self-avoiding molecular recognition systems // Biol. Methods Protoc. 2020. V. 5. № 1. Article bpaa004. doi: 10.1093/biomethods/bpaa004
  27. Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA // Nucleic Acids Res. 2000. V. 28. № 12. Article e63. doi: 10.1093/nar/28.12.e63
  28. Park J.W. Principles and applications of loop-mediated isothermal amplification to point-of-care tests // Biosensors (Basel). 2022. V. 12. № 10. Article 857. doi: 10.3390/bios12100857
  29. Estrela P.F., Mendes G.M., Oliveira K.G., Bailão A.M., Soares C.M., Assunção N.A., Duarte G.R. Ten-minute direct detection of Zika virus in serum samples by RT-LAMP // J. Virol. Methods. 2019. V. 271. Article 113675. doi: 10.1016/j.jviromet.2019.113675
  30. Ji J., Chen Q., Sui C., Hu W., Yu Z., Zhang Z., Mu X., Xu X., Yao L., Kan Y., Xie Q. Rapid and visual detection of novel Astroviruses causing fatal gout in goslings using one-step reverse transcription loop-mediated isothermal amplification // Poult. Sci. 2020. V. 99. № 9. P. 4259.doi: 10.1016/j.psj.2020.05.024
  31. Chen H.W., Weissenberger G., Ching W.M. Development of lyophilized loop-mediated isothermal amplification reagents for the detection of Leptospira // Mil. Med. 2016. V. 181. № 5. P. 227. doi: 10.7205/MILMED-D-15-00149
  32. Song X., Coulter F.J., Yang M., Smith J.L., Tafesse F.G., Messer W.B., Reif J.H. A lyophilized colorimetric RT-LAMP test kit for rapid, low-cost, at-home molecular testing of SARS-CoV-2 and other pathogens // Sci. Rep. 2022. V. 12. № 1. Article 7043. doi: 10.1038/s41598-022-11144-5
  33. Nagamine K., Hase T., Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers // Mol. Cell. Probes. 2002. V. 16. № 3. P. 223. doi: 10.1006/mcpr.2002.0415
  34. Fischbach J., Xander N.C., Frohme M., Glokler J.F. Shining a light on LAMP assays – A comparison of LAMP visualization methods including the novel use of berberine // Biotechniques. 2015. V. 58. № 4. P. 189. doi: 10.2144/000114275
  35. Mori Y., Nagamine K., Tomita N., Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation // Biochem. Biophys. Res. Com. 2001. V. 289. № 1. P. 150. doi: 10.1006/bbrc.2001.5921
  36. Shirato K. Detecting amplicons of loop-mediated isothermal amplification // Microbiol. Immunol. 2019. V. 63. № 10. P. 407.doi: 10.1111/1348-0421.12734
  37. Chatterjee S., Mukhopadhyay S. Recent advances of lateral flow immunoassay components as “point of need” // J. Immunoassay Immunochem. 2022. V. 43. № 6. P. 579.doi: 10.1080/15321819.2022.2122063
  38. Lai M.Y., Lau Y.L. Detection of Plasmodium knowlesi using recombinase polymerase amplification (RPA) combined with SYBR Green I // Acta Tropica. 2020. V. 208. Article 105511. doi: 10.1016/j.actatropica.2020.105511
  39. Singpanomchai N., Akeda Y., Tomono K., Tamaru A., Santanirand P., Ratthawongjirakul P. Naked eye detection of the Mycobacterium tuberculosis complex by recombinase polymerase amplification-SYBR green I assays // J. Clin. Lab. Anal. 2019. V. 33. № 2. Article e22655. doi: 10.1002/jcla.22655
  40. Waman V.P., Vedithi S.C., Thomas S.E., Bannerman B.P., Munir A., Skwark M.J., Malhotra S., Blundell T.L. Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery // Emerg. Microbes Infect. 2019. V. 8. № 1. P. 109. doi: 10.1080/22221751.2018.1561158
  41. Zheng Y., Hu P., Ren H., Wang H., Cao Q., Zhao Q., Li H., Zhang H., Liu Z., Li Y., Wang C., Liu Z., Lu S. RPA-SYBR Green I based instrument-free visual detection for pathogenic Yersinia enterocolitica in meat // Anal. Biochem. 2021. V. 621. Article 114157.doi: 10.1016/j.ab.2021.114157
  42. Parida M., Horioke K., Ishida H., Dash P.K., Saxena P., Jana A.M., Islam M.A., Inoue S., Hosaka N., Morita K. Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay // J. Clin. Microbiol. 2005. V. 43. № 6. P. 2895. doi: 10.1128/JCM.43.6.2895-2903.2005
  43. Hill J., Beriwal S., Chandra I., Paul V.K., Kapil A., Singh T., Wadowsky R.M., Singh V., Goyal A., Jahnukainen T., Johnson J.R., Tarr P.I., Vats A. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli // J. Clin. Microbiol. 2008. V. 46. № 8. P. 2800. doi: 10.1128/JCM.00152-08
  44. Lai M.Y., Ooi C.H., Lau Y.L. Validation of SYBR green I based closed-tube loop-mediated isothermal amplification (LAMP) assay for diagnosis of knowlesi malaria // Malar. J. 2021. V. 20. № 1. Article 166. doi: 10.1186/s12936-021-03707-0
  45. Vinayaka A.C., Golabi M., Than T.L.Q., Wolff A., Bang D.D. Point-of-care diagnosis of invasive non-typhoidal Salmonella enterica in bloodstream infections using immunomagnetic capture and loop-mediated isothermal amplification // N. Biotechnol. 2022. V. 66. P. 1 doi: 10.1016/j.nbt.2021.08.003
  46. Curtis K.A., Rudolph D.L., Owen S.M. Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP) // J. Virol. Methods. 2008. V. 151. № 2. P. 264. doi: 10.1016/j.jviromet.2008.04.011
  47. Dukes J.P., King D.P., Alexandersen S. Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus // Arch. Virol. 2006. V. 151. № 6. P. 1093. doi: 10.1007/s00705-005-0708-5
  48. Kottur J., Nair D.T. Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction // Nucleic Acids Res. 2018. V. 46. № 12. P. 5875. doi: 10.1093/nar/gky402.
  49. Tomita N., Mori Y., Kanda H., Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products // Nat. Protoc. 2008. V. 3. № 5. P. 877. doi: 10.1038/nprot.2008.57
  50. Mansour S.M., Ali H., Chase C.C., Cepica A. Loop-mediated isothermal amplification for diagnosis of 18 World Organization for Animal Health (OIE) notifiable viral diseases of ruminants, swine and poultry // Anim. Health Res. Rev. 2015. V. 16. № 2. P. 89. doi: 10.1017/S1466252315000018
  51. Liu H., Yu H., Peng Z.Q., Yu Y.Y., Xie J.F., Yang Y. Visual and rapid detection of Plesiomonas shigelloides using loop-mediated isothermal amplification method // Lett. Appl. Microbiol. 2019. V. 69. № 6. P. 411. doi: 10.1111/lam.13225
  52. Chen X., Ma K., Yi X., Xiong L., Wang Y., Li S. The rapid and visual detection of methicillin-susceptible and methicillin-resistant Staphylococcus aureus using multiplex loop-mediated isothermal amplification linked to a nanoparticle-based lateral flow biosensor // Antimicrob. Resist. Infect. Control. 2020. V. 9. № 1. Article 111. doi: 10.1186/s13756-020-00774-x
  53. Chen X., Zhou Q., Wu X., Wang S., Liu R., Dong S., Yuan W. Visual and rapid diagnosis of Neisseria gonorrhoeae using loop-mediated isothermal amplification combined with a polymer nanoparticle-based biosensor in clinical application // Front. Mol. Biosci. 2021. V. 8. Article 702134. doi: 10.3389/fmolb.2021.702134
  54. Wu C., Zeng Y., He Y. Rapid visualization and detection of Staphylococcus aureus based on loop-mediated isothermal amplification // World J. Microbiol. Biotechnol. 2021. V. 37. № 12. Article 209. doi: 10.1007/s11274-021-03178-0
  55. Goto M., Honda E., Ogura A., Nomoto A., Hanaki K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue // Biotechniques. 2009. V. 46. № 3. P. 167.doi: 10.2144/000113072
  56. Tanner N.A., Zhang Y., Evans T.C. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes // Biotechniques. 2015. V. 58. № 2. P. 59. doi: 10.2144/000114253
  57. Priti, Jangra S., Baranwal V.K., Dietzgen R.G., Ghosh A. A rapid field-based assay using recombinase polymerase amplification for identification of Thrips palmi, a vector of tospoviruses // J. Pest Sci. 2021. V. 94. № 2. P. 219. doi: 10.1007/s10340-020-01284-w
  58. Nolasco O., Montoya J., Ana L., Barrientos S., Rosanas-Urge A., Gamboa D. Multicopy targets for Plasmodium vivax and Plasmodium falciparum detection by colorimetric LAMP // Malar. J. 2021. V. 20. № 1. Article 225. doi: 10.1186/s12936-021-03753-8
  59. Cecere P., Gatto F., Cortimiglia C., Bassi D., Lucchini F., Cocconcelli P.S., Pompa P.P. Colorimetric point-of-care detection of Clostridium tyrobutyricum spores in milk samples // Biosensors (Basel). 2021. V. 11. Article 293. doi: 10.3390/bios11090293
  60. Cibecchini G., Cecere P., Tumino G., Morcia C, Ghizzoni R., Carnevali P., Terzi V., Pompa P.P. A fast, naked-eye assay for varietal traceability in the durum wheat production chain // Foods. 2020. V. 9. № 11. Article 1691. doi: 10.3390/foods9111691
  61. Aldossary A.M., Tawfik E.A., Altammami M.A., Alquait A.A., Booq R.Y., Sendy B.K., Alarawi M.S., Gojobori T., Altamimi A.M., Alaifan T.A., Albarrag A.M., Alyamani E.J. Development and validation of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) as a simple and rapid diagnostic tool for SARS-CoV-2 detection // Diagnostics (Basel). 2022. V. 12. № 9. Article 2232. doi: 10.3390/diagnostics12092232
  62. Koczula K.M., Gallotta A. Lateral flow assays // Essays Biochem. 2016. V. 60. № 1. P. 111. doi: 10.1042/EBC20150012
  63. Kortli S., Jauset-Rubio M., Tomaso H., Abbas M.N., Bashammakh A.S., El-Shahawi M.S., Alyoubi A.O., Ben-Ali M., O’Sullivan C.K. Yersinia pestis detection using biotinylated dNTPs for signal enhancement in lateral flow assays // Anal. Chim. Acta. 2020. V. 1112. P. 54.doi: 10.1016/j.aca.2020.03.059
  64. Agarwal S., Warmt C., Henkel J., Schrick L, Nitsche A., Bier F.F. Lateral flow-based nucleic acid detection of SARS-CoV-2 using enzymatic incorporation of biotin-labeled dUTP for POCT use // Anal. Bioanal. Chem. 2022. V. 414. № 10. P. 3177. doi: 10.1007/s00216-022-03880-4
  65. Mayran C., Foulongne V., Perre P.V., Fournier-Wirth C., Molès J.P., Cantaloube J.F. Rapid diagnostic test for hepatitis B virus viral load based on recombinase polymerase amplification combined with a lateral flow read-out // Diagnostics (Basel). 2022. V. 12. № 3. Article 621. doi: 10.3390/diagnostics12030621
  66. Ivanov A.V., Safenkova I.S., Zherdev A.V., Dzantiev B.B. Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus // Talanta. 2020. V. 210. Article 120616. doi: 10.1016/j.talanta.2019.120616
  67. Ivanov A.V., Safenkova I.S., Drenova N.V., Zherdev A.V., Dzantiev B.B. Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solani // Mol. Cell. Probes. 2020. V. 53. Article 101622.doi: 10.1016/j.mcp.2020.101622
  68. Zheng T., Li X., Si Y., Wang M., Zhou Y., Yang Y., Liang N., Ying B., Wu P. Specific lateral flow detection of isothermal nucleic acid amplicons for accurate point-of-care testing // Biosens. Bioelectron. 2023. V. 222. Article 114989. doi: 10.1016/j.bios.2022.114989
  69. Safenkova I.S., Ivanov A.V., Slutskaya E.S., Samokhvalov A.V., Zherdev A.V., Dzantiev B.B. Key significance of DNA-target size in lateral flow assay coupled with recombinase polymerase amplification // Anal. Chim. Acta. 2020. V. 1102. P. 109.doi: 10.1016/j.aca.2019.12.048
  70. Chen X., Zhou Q., Li S., Yan H., Chang B., Wang Y., Dong S. Rapid and visual detection of SARS-CoV-2 using multiplex reverse transcription loop-mediated isothermal amplification linked with gold nanoparticle-based lateral flow biosensor // Front. Cell. Infect. Microbiol. 2021. V. 11. Article 581239.doi: 10.3389/fcimb.2021.581239
  71. Zasada A.A., Mosiej E., Prygiel M., Polak M., Wdowiak K., Formińska K., Ziółkowski R., Żukowski K., Marchlewicz K., Nowiński A., Nowińska J., Rastawicki W., Malinowska E. Detection of SARS-CoV-2 using reverse transcription helicase dependent amplification and reverse transcription loop-mediated amplification combined with lateral flow assay // Biomedicines. 2022. V. 10. № 9. Article 2329. doi: 10.3390/biomedicines10092329
  72. Srisawat W., Saengthongpinit C., Nuchchanart W. Development of loop-mediated isothermal amplification-lateral flow dipstick as a rapid screening test for detecting Listeria monocytogenes in frozen food products using a specific region on the ferrous iron transport protein B gene // Vet. World. 2022. V. 15. № 3. P. 590. doi: 10.14202/vetworld.2022.590-601
  73. Wang L., Chen G.F., Zhang C.Y., Wang Y.Y., Sun R. Rapid and sensitive detection of Amphidinium carterae by loop-mediated isothermal amplification combined with a chromatographic lateral-flow dipstick // Mol. Cell. Probes. 2019. V. 43, P. 72.doi: 10.1016/j.mcp.2018.11.001
  74. Longo M.C., Berninger M.S., Hartley J.L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions // Gene. 1990. V. 93. № 1. P. 125. doi: 10.1016/0378-1119(90)90145-h
  75. Hsieh K., Mage P.L., Csordas A.T., Eisenstein M., Soh H.T. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP) // Chem. Commun. (Camb.). 2014. V. 50. № 28. P. 3747. doi: 10.1039/c4cc00540f
  76. Koonin E.V., Makarova K.S., Zhang F. Diversity, classification and evolution of CRISPR-Cas systems // Curr. Opin. Microbiol. 2017. V. 37. P. 67. doi: 10.1016/j.mib.2017.05.008
  77. Gootenberg J.S., Abudayyeh O.O., Lee J.W., Essletzbichler P., Dy A.J., Joung J., Verdine V., Donghia N., Daringer N.M., Freije C.A., Myhrvold C., Bhattacharyya R.P., Livny J., Regev A., Koonin E.V., Hung D.T., Sabeti P.C., Collins J.J., Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2 // Science. 2017. V. 356. № 6336. P. 438. doi: 10.1126/science.aam9321
  78. Myhrvold C., Freije C.A., Gootenberg J.S., Abudayyeh O.O., Metsky H.C., Durbin A.F., Kellner M.J., Tan A.L., Paul L.M., Parham L.A., Garcia K.F., Barnes K.G., Chak B., Mondini A., Nogueira M.L., Isern S., Michael S.F., Lorenzana I., Yozwiak N.L., MacInnis B.L., Bosch I., Gehrke L., Zhang F., Sabeti P.C. Field-deployable viral diagnostics using CRISPR-Cas13 // Science. 2018. V. 360. № 6387. P. 444. doi: 10.1126/science.aas8836
  79. Chang Y., Deng Y., Li T., Wang J., Wang T., Tan F., Li X., Tian K. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a // Transbound. Emerg. Dis. 2020. V. 67. № 2. P. 564. doi: 10.1111/tbed.13368
  80. Yin D., Yin L., Wang J., Shen X., Pan X., Hou H., Zhao R., Hu X., Wang G., Qi K., Dai Y. Visual detection of duck Tembusu virus with CRISPR/Cas13: A sensitive and specific point-of-care detection // Front. Cell. Infect. Microbiol. 2022. V. 12. Article 848365.doi: 10.3389/fcimb.2022.848365
  81. An B., Zhang H., Su X., Guo Y., Wu T., Ge Y., Zhu F., Cui L. Rapid and sensitive detection of salmonella spp. using CRISPR-Cas13a combined with recombinase polymerase amplification // Front. Microbiol. 2021. V. 12. Article 732426. doi: 10.3389/fmicb.2021.732426
  82. Hu F., Liu Y., Zhao S., Zhang Z., Li X., Peng N., Jiang Z. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics // Biosens. Bioelectron. 2022. V. 202. Article 113994. doi: 10.1016/j.bios.2022.113994
  83. López-Valls M., Escalona-Noguero C., Rodríguez-Díaz C., Pardo D., Castellanos M., Milán-Rois P., Martínez-Garay C., Coloma R., Abreu M., Cantón R., Galán J.C., Miranda R., Somoza Á., Sot B. CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles // Anal. Chim. Acta. 2022. V. 1205. Article 339749. doi: 10.1016/j.aca.2022.339749
  84. Ortiz-Cartagena C., Fernández-García L., Blasco L., Pacios O., Bleriot I., López M., Cantón R., Tomás M. Reverse transcription-loop-mediated isothermal amplification-CRISPR-Cas13a technology as a promising diagnostic tool for SARS-CoV-2 // Microbiol. Spectr. 2022. V. 10. № 5. Article e0239822. doi: 10.1128/spectrum.02398-22
  85. Lin K., Guo J., Guo X., Li Q., Li X., Sun Z., Zhao Z., Weng J., Wu J., Zhang R., Li B. Fast and visual detection of nucleic acids using a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM // Anal. Chim. Acta. 2023. V. 1248. Article 340938. doi: 10.1016/j.aca.2023.340938
  86. Wang P., Guo B., Zhang X., Wang Y., Yang G., Shen H., Gao S., Zhang L. One-pot molecular diagnosis of acute hepatopancreatic necrosis disease by recombinase polymerase amplification and CRISPR/Cas12a with specially designed crRNA // J. Agric. Food Chem. 2023. V. 71. № 16. P. 6490. doi: 10.1021/acs.jafc.2c08689
  87. Chen J.S., Ma E., Harrington L.B., Da Costa M., Tian X., Palefsky J.M., Doudna J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity // Science. 2018. V. 360. № 6387. P. 436. doi: 10.1126/science.aar6245
  88. Wang B., Wang R., Wang D., Wu J., Li J., Wang J., Liu H., Wang Y. Cas12aVDet: A CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection // Anal. Chem. 2019. V. 91. № 19. P. 12156. doi: 10.1021/acs.analchem.9b01526
  89. Xiao Y., Ren H., Wang H., Zou D., Liu Y., Li H., Hu P., Li Y., Liu Z., Lu S. A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system // Talanta. 2023. V. 259. Article 124558. doi: 10.1016/j.talanta.2023.124558
  90. Jiao J., Liu Y., Yang M., Zheng J., Liu C., Ye W., Song S., Bai T., Song C., Wang M., Shi J., Wan R., Zhang K., Hao P., Feng J., Zheng X. The engineered CRISPR-Mb2Cas12a variant enables sensitive and fast nucleic acid-based pathogens diagnostics in the field // Plant Biotechnol. J. 2023. V. 21. P. 1465. doi: 10.1111/pbi.14051
  91. Jiang T., Hu X., Lin C., Xia Z., Yang W., Zhu Y., Xu H., Tang H., Shen J. Rapid visualization of Clostridioides difficile toxins A and B by multiplex RPA combined with CRISPR-Cas12a // Front. Microbiol. 2023. V. 14. Article 1119395. doi: 10.3389/fmicb.2023.1119395
  92. Deng L., He X., Liu K., Li Y., Xia H., Qian H., Lu X., Mao X., Xiang Y. One-pot RPA-Cas12a assay for instant and visual detection of Burkholderia pseudomallei // Anal. Chim. Acta. 2023. V. 1252. Article 341059. doi: 10.1016/j.aca.2023.341059
  93. Hao J., Xie L., Yang T., Huo Z., Liu G., Liu Y., Xiong W., Zeng Z. Naked-eye on-site detection platform for Pasteurella multocida based on the CRISPR-Cas12a system coupled with recombinase polymerase amplification // Talanta. 2023. V. 255. Article 124220. doi: 10.1016/j.talanta.2022.124220
  94. Aman R., Mahas A., Marsic T., Hassan N., Mahfouz M.M. Efficient, rapid, and sensitive detection of plant RNA viruses with one-pot RT-RPA-CRISPR/Cas12a Assay // Front. Microbiol. 2020. V. 11. Article 610872. doi: 10.3389/fmicb.2020.610872
  95. Liu S., Tao D., Liao Y., Yang Y., Sun S., Zhao Y., Yang P., Tang Y., Chen B., Liu Y., Xie S., Tang Z. Highly sensitive CRISPR/Cas12a-Based fluorescence detection of porcine reproductive and respiratory syndrome virus // ACS Synth. Biol. 2021. V. 10. № 10. P. 2499. doi: 10.1021/acssynbio.1c00103
  96. Xiong Y., Cao G., Chen X., Yang J., Shi M., Wang Y., Nie F., Huo D., Hou C. One-pot platform for rapid detecting virus utilizing recombinase polymerase amplification and CRISPR/Cas12a // Appl. Microbiol. Biotechnol. 2022. V. 106. № 12. P. 4607.doi: 10.1007/s00253-022-12015-9
  97. Qin C., Liu J., Zhu W., Zeng M., Xu K., Ding J., Zhou H., Zhu J., Ke Y., Li L.Y., Sheng G., Li Z., Luo H., Jiang S., Chen K., Ding X., Meng H. One-pot visual detection of african swine fever virus using CRISPR-Cas12a // Front. Vet. Sci. 2022. V. 9. Article 962438. doi: 10.3389/fvets.2022.962438
  98. Lin M., Yue H., Tian T., Xiong E., Zhu D., Jiang Y., Zhou X. Glycerol additive boosts 100-fold sensitivity enhancement for one-pot RPA-CRISPR/Cas12a assay // Anal. Chem. 2022. V. 94. № 23. P. 8277. doi: 10.1021/acs.analchem.2c00616
  99. Shao F., Park J.S., Zhao G., Hsieh K., Wang T.H. Elucidating the role of CRISPR/Cas in single-step isothermal nucleic acid amplification testing assays // Anal. Chem. 2023. V. 95. № 7. P. 3873. doi: 10.1021/acs.analchem.2c05632
  100. Tang G., Zhang Z., Tan W., Long F., Sun J., Li Y., Zou S., Yang Y., Cai K., Li S., Wang Z., Liu J., Mao G., Ma Y, Zhao G.P., Tian Z.G., Zhao W. RT-RPA-Cas12a-based assay facilitates the discrimination of SARS-CoV-2 variants of concern // Sens. Actuators B: Chem. 2023. V. 381. Article 133433. doi: 10.1016/j.snb.2023.133433
  101. Zhu Y., Lin C., Xu H., Xia Z., Yang W., Tang H., Hu X., Jiang T., Liu Z., Shen J. Establishment and methodological evaluation of a method for rapid detection of helicobacter pylori and virulence genes based on CRISPR-Cas12a // Infect. Drug Resist. 2023. V. 16. P. 435. doi: 10.2147/idr.s398098
  102. Jiao J., Kong K., Han J., Song S., Bai T., Song C., Wang M., Yan Z., Zhang H., Zhang R., Feng J., Zheng X. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay // Plant Biotechnol. J. 2021. V. 19. № 2. P. 394. doi: 10.1111/pbi.13474
  103. Zhang W.S., Pan J., Li F., Zhu M., Xu M., Zhu H., Yu Y., Su G. Reverse transcription recombinase polymerase amplification coupled with CRISPR-Cas12a for facile and highly sensitive colorimetric SARS-CoV-2 detection // Anal. Chem. 2021. V. 93. № 8. P. 4126. doi: 10.1021/acs.analchem.1c00013
  104. Wei L., Wang Z., Wang J., Wang X., Chen Y. Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification // Anal. Chim. Acta. 2022. V. 1230. Article 340357. doi: 10.1016/j.aca.2022.340357
  105. Qian C., Wang R., Wu H., Zhang F., Wu J., Wang L. Uracil-mediated new photospacer-adjacent motif of Cas12a to realize visualized DNA detection at the single-copy level free from contamination // Anal. Chem. 2019. V. 91. № 17. P. 11362. doi: 10.1021/acs.analchem.9b02554
  106. Chen Y., Shi Y., Chen Y., Yang Z., Wu H., Zhou Z., Li J., Ping J., He L., Shen H., Chen Z., Wu J., Yu Y., Zhang Y., Chen H. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection // Biosens. Bioelectron. 2020. V. 169. Article 112642. doi: 10.1016/j.bios.2020.112642
  107. Wang R., Qian C., Pang Y., Li M., Yang Y., Ma H., Zhao M., Qian F., Yu H., Liu Z., Ni T., Zheng Y., Wang Y. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection // Biosens. Bioelectron. 2021. V. 172. Article 112766. doi: 10.1016/j.bios.2020.112766
  108. Pang B., Xu J., Liu Y., Peng H., Feng W., Cao Y., Wu J., Xiao H., Pabbaraju K., Tipples G., Joyce M.A., Saffran H.A., Tyrrell D.L., Zhang H., Le X.C. Isothermal amplification and ambient visualization in a single tube for the detection of SARS-CoV-2 using loop-mediated amplification and CRISPR technology // Anal. Chem. 2020. V. 92. № 24. P. 16204. doi: 10.1021/acs.analchem.0c04047
  109. Park B.J., Park M.S., Lee J.M., Song Y.J. Specific detection of influenza A and B viruses by CRISPR-Cas12a-based assay // Biosensors (Basel). 2021. V. 11. № 3. Article 88. doi: 10.3390/bios11030088
  110. Ding R., Long J., Yuan M., Zheng X., Shen Y., Jin Y., Yang H., Li H., Chen S., Duan G. CRISPR/Cas12-based ultra-sensitive and specific point-of-care detection of HBV // Int. J. Mol. Sci. 2021. V. 22. № 9. Article 4842. doi: 10.3390/ijms22094842
  111. Cao Y., Wu J., Pang B., Zhang H., Le X.C. CRISPR/Cas12a-mediated gold nanoparticle aggregation for colorimetric detection of SARS-CoV-2 // Chem. Commun. (Camb.). 2021. V. 57. № 56. P. 6871. doi: 10.1039/d1cc02546e
  112. Figueiredo D., Cascalheira A., Goncalves J. Rapid, multiplex detection of SARS-CoV-2 using isothermal amplification coupled with CRISPR-Cas12a // Sci. Rep. 2023. V. 13. № 1. Article 849. doi: 10.1038/s41598-022-27133-7
  113. Su G., Zhu M., Li D., Xu M., Zhu Y., Zhang Y., Zhu H., Li F., Yu Y. Multiplexed lateral flow assay integrated with orthogonal CRISPR-Cas system for SARS-CoV-2 detection // Sens. Actuators B: Chem. 2022. V. 371. Article 132537.doi: 10.1016/j.snb.2022.132537
  114. Li L., Li S., Wu N., Wu J., Wang G., Zhao G., Wang J. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation // ACS Synth. Biol. 2019. V. 8. № 10. P. 2228. doi: 10.1021/acssynbio.9b00209
  115. Nguyen L.T., Macaluso N.C., Pizzano B.L.M., Cash M.N., Spacek J., Karasek J., Miller M.R., Lednicky J.A., Dinglasan R.R., Salemi M., Jain P.K. A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern // eBioMedicine. 2022. V. 77. Article 103926. doi: 10.1016/j.ebiom.2022.103926
  116. Song J., El-Tholoth M., Li Y., Graham-Wooten J., Liang Y., Li J., Li W., Weiss S.R., Collman R.G., Bau H.H. Single- and two-stage, closed-tube, point-of-care, molecular detection of SARS-CoV-2 // Anal. Chem. 2021. V. 93. № 38. P. 13063.doi: 10.1021/acs.analchem.1c03016
  117. Seok Y., Yin Q., Bai H., Bau H.H. Sensitive, single-pot, two-stage assay for hepatitis viruses // Anal. Chem. 2022. V. 94. № 3. P. 1778. doi: 10.1021/acs.analchem.1c04480

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Figure 1. Schematic representation of recombinant polymerase amplification (RPA).

Baixar (81KB)
3. Fig. 2. Schematic representation of loop amplification (LAMP).

Baixar (146KB)
4. Pain. 3. Schematic representation of the detection of PRO and LAMP amplicons using CRISPR/Cas nucleases Cas13a and Cas 12 (Cas12a or Cas12b).

Baixar (193KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024