Recombinase polymerase and loop isothermal amplification in DNA diagnostics of infectious diseases
- Autores: Kurbatov L.K.1, Ptitsyn K.G.1, Khmeleva S.A.1, Radko S.P.1, Lisitsa A.V.1,2, Suprun E.V.1,3
-
Afiliações:
- Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича
- Тюменский государственный университет
- Московский государственный университет имени М.В. Ломоносова
- Edição: Volume 79, Nº 3 (2024)
- Páginas: 210-228
- Seção: REVIEWS
- ##submission.dateSubmitted##: 31.01.2025
- URL: https://snv63.ru/0044-4502/article/view/650238
- DOI: https://doi.org/10.31857/S0044450224030025
- EDN: https://elibrary.ru/vrjshp
- ID: 650238
Citar
Resumo
Рекомбиназная полимеразная и петлевая изотермическая амплификация может быть проведена во внелабораторных условиях, что делает эти методы перспективными для разработки экспресс-тестов для ДНК-диагностики инфекционных заболеваний человека, а также сельскохозяйственных животных и растений в формате оказания медицинской помощи на месте (англ. “point-of-care” testing) или полевой детекции (англ. “in-field” detection). В обзоре рассмотрены основные принципы, на которых основаны данные методы, а также их современное состояние с акцентом на неинструментальные методы регистрации результата изотермической амплификации с помощью колориметрии и иммунохроматографических тест-полосок. Подробно освещены подходы к повышению селективности изотермической амплификации путём её объединения с CRISPR/Cas-детекцией или путём объединения двух методов по принципу гнездовой амплификации.
Texto integral

Sobre autores
L. Kurbatov
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича
Email: lenasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121
K. Ptitsyn
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича
Email: lenasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121
S. Khmeleva
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича
Email: lenasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121
S. Radko
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича
Email: lenasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121
A. Lisitsa
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича; Тюменский государственный университет
Email: enasuprun@mail.ru
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121; ул. Володарского, 6, Тюмень, 625003
E. Suprun
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича; Московский государственный университет имени М.В. Ломоносова
Autor responsável pela correspondência
Email: lenasuprun@mail.ru
химический факультет
Rússia, ул. Погодинская, 10, стр. 8, Москва, 119121; Ленинские горы, 1, стр. 3, ГСП-1, Москва, 119991Bibliografia
- Erdmann V.A., Jurga S., Barciszewski J. RNA and DNA Diagnostics. N.Y.: Springer, 2015. P. 359.
- Schmitz J.E., Stratton C.W., Persing D.H., Tang Y.W. Forty years of molecular diagnostics for infectious diseases // J. Clin. Microbiol. 2022. V. 60. № 10. Article e0244621.doi: 10.1128/jcm.02446-21
- Rolfs A., Schuller I., Finckh U., Weber-Rolfs I. PCR: Clinical Diagnostics and Research. N.Y.: Springer, 2011. P. 386.
- Abel G. Current status and future prospects of point-of-care testing around the globe // Expert Rev. Mol. Diagn. 2015. V. 15. № 7. P. 853. doi: 10.1586/14737159.2015.1060126
- Fernandes R.S., de Oliveira Silva J., Gomes K.B., Azevedo R.B., Townsend D.M., de Paula Sabino A., Branco de Barros A.L. Recent advances in point of care testing for COVID-19 detection // Biomed. Pharmacother. 2022. V. 153. Article 113538. doi: 10.1016/j.biopha.2022.113538
- De Felice M., De Falco M., Zappi D., Antonacci A., Scognamiglio V. Isothermal amplification-assisted diagnostics for COVID-19 // Biosens. Bioelectron. 2022. V. 205. Article 114101.doi: 10.1016/j.bios.2022.114101
- Vidic J., Vizzini P., Manzano M., Kavanaugh D., Ramarao N., Zivkovic M., Radonic V., Knezevic N., Giouroudi I., Gadjanski I. Point-of-need DNA testing for detection of foodborne pathogenic bacteria // Sensors (Basel). 2019. V. 19. № 5. P. 1100. doi: 10.3390/s19051100
- Baldi P., La Porta N. Molecular approaches for low-cost point-of-care pathogen detection in agriculture and forestry // Front. Plant Sci. 2020. V. 11. Article 570862.doi: 10.3389/fpls.2020.570862
- Demetria C., Kimitsuki K., Yahiro T., Saito N., Hashimoto T., Khan S., Chu M.Y.J., Manalo D., Mananggit M., Quiambao B., Nishizono A. Evaluation of a real-time mobile PCR device (PCR 1100) for the detection of the rabies gene in field samples // Trop. Med. Health. 2023. V. 51. № 1. P. 17.doi: 10.1186/s41182-023-00501-3
- Nguyen P.Q.M., Wang M., Ann Maria N., Li A.Y., Tan H.Y., Xiong G.M., Tan M.M., Bhagat A.A.S., Ong C.W.M., Lim C.T. Modular micro-PCR system for the onsite rapid diagnosis of COVID-19 // Microsyst. Nanoeng. 2022. V. 8. P. 82.doi: 10.1038/s41378-022-00400-3
- Jiang H., Li Y., Lv X., Deng Y., Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection // Talanta. 2023. V. 260. Article 124645.doi: 10.1016/j.talanta.2023.124645
- Bodulev O.L., Sakharov I.Y. Isothermal nucleic acid amplification techniques and their use in bioanalysis // Biochemistry (Moscow). 2020. V. 85. № 2. P. 147. doi: 10.1134/S0006297920020030
- Ivanov A.V., Safenkova I.V., Zherdev A.V., Dzantiev B.B. The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens // Plants (Basel). 2021. V. 10. № 11. Article 2424. doi: 10.3390/plants10112424
- Wong Y.P., Othman S., Lau Y.L., Radu S., Chee H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms // J. Appl. Microbiol. 2018. V. 124. № 3. P. 626. doi: 10.1111/jam.13647
- Oliveira B.B., Veigas B., Baptista P.V. Isothermal amplification of nucleic acids: The race for the next “Gold Standard” // Front. Sens. 2021. V. 2. Article 752600.doi: 10.3389/fsens.2021.752600
- Torres C., Vitalis E.A., Baker B.R., Gardner S.N., Torres M.W., Dzenitis J.M. LAVA: An open-source approach to designing LAMP (loop-mediated isothermal amplification) DNA signatures // BMC Bioinformatics. 2011. V. 12. P. 240.doi: 10.1186/1471-2105-12-240
- Jia B., Li X., Liu W., Lu C., Lu X., Ma L., Li Y.Y., Wei C. GLAPD: Whole genome based LAMP primer design for a set of target genomes // Front. Microbiol. 2019. V. 10. P. 2860. doi: 10.3389/fmicb.2019.02860
- Higgins M., Ravenhall M., Ward D., Phelan J., Ibrahim A., Forrest M.S., Clark T.G., Campino S. PrimedRPA: Primer design for recombinase polymerase amplification assays // Bioinformatics. 2019. V. 35. № 4. P. 682.doi: 10.1093/bioinformatics/bty701
- Yuan B., Yuan C., Li L., Long M., Chen Z. Application of the CRISPR/Cas system in pathogen detection: A review // Molecules. 2022. V. 27. № 20. Article 6999. doi: 10.3390/molecules27206999
- García-Bernalt Diego J., Fernández-Soto P., Muro A. The future of point-of-care nucleic acid amplification diagnostics after COVID-19: Time to walk the walk // Int. J. Mol. Sci. 2022. V. 23. № 22. Article 14110. doi: 10.3390/ijms232214110
- Ivanov A.V., Safenkova I.V., Drenova N.V., Zherdev A.V., Dzantiev B.B. Comparison of biosensing methods based on different isothermal amplification strategies: A case study with Erwinia amylovora // Biosensors (Basel). 2022. V. 12. № 12. Article 1174. doi: 10.3390/bios12121174
- Song J., Liu C.C., Mauk M.G., Rankin S.C., Lok J.B., Greenberg R.M., Bau H.H. Two-stage isothermal enzymatic amplification for concurrent multiplex molecular detection// Clin. Chem. 2017. V. 63. № 3. P. 714. doi: 10.1373/clinchem.2016.263665
- Piepenburg O., Williams C.H., Stemple D.L., Armes N.A. DNA detection using recombination proteins // PLoS Biol. 2006. V. 4. № 7. Article e204. doi: 10.1371/journal.pbio.0040204
- Lobato I.A., O’Sullivan C.K. Recombinase polymerase amplification: Basics, applications and recent advances // Trends Anal. Chem. 2018. V. 98. P. 19. doi: 10.1016/j.trac.2017.10.015
- Higgins M., Stringer O.W., Ward D., Andrews J.M., Forrest M.S., Campino S., Clark T.G. Characterizing the impact of primer-template mismatches on recombinase polymerase amplification // J. Mol. Diagn. 2022. V. 24. № 11. P. 1207. doi: 10.1016/j.jmoldx.2022.08.005.
- Yang Z., Le J.T., Hutter D., Bradley K.M., Overton B.R., McLendon C., Benner S.A. Eliminating primer dimers and improving SNP detection using self-avoiding molecular recognition systems // Biol. Methods Protoc. 2020. V. 5. № 1. Article bpaa004. doi: 10.1093/biomethods/bpaa004
- Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA // Nucleic Acids Res. 2000. V. 28. № 12. Article e63. doi: 10.1093/nar/28.12.e63
- Park J.W. Principles and applications of loop-mediated isothermal amplification to point-of-care tests // Biosensors (Basel). 2022. V. 12. № 10. Article 857. doi: 10.3390/bios12100857
- Estrela P.F., Mendes G.M., Oliveira K.G., Bailão A.M., Soares C.M., Assunção N.A., Duarte G.R. Ten-minute direct detection of Zika virus in serum samples by RT-LAMP // J. Virol. Methods. 2019. V. 271. Article 113675. doi: 10.1016/j.jviromet.2019.113675
- Ji J., Chen Q., Sui C., Hu W., Yu Z., Zhang Z., Mu X., Xu X., Yao L., Kan Y., Xie Q. Rapid and visual detection of novel Astroviruses causing fatal gout in goslings using one-step reverse transcription loop-mediated isothermal amplification // Poult. Sci. 2020. V. 99. № 9. P. 4259.doi: 10.1016/j.psj.2020.05.024
- Chen H.W., Weissenberger G., Ching W.M. Development of lyophilized loop-mediated isothermal amplification reagents for the detection of Leptospira // Mil. Med. 2016. V. 181. № 5. P. 227. doi: 10.7205/MILMED-D-15-00149
- Song X., Coulter F.J., Yang M., Smith J.L., Tafesse F.G., Messer W.B., Reif J.H. A lyophilized colorimetric RT-LAMP test kit for rapid, low-cost, at-home molecular testing of SARS-CoV-2 and other pathogens // Sci. Rep. 2022. V. 12. № 1. Article 7043. doi: 10.1038/s41598-022-11144-5
- Nagamine K., Hase T., Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers // Mol. Cell. Probes. 2002. V. 16. № 3. P. 223. doi: 10.1006/mcpr.2002.0415
- Fischbach J., Xander N.C., Frohme M., Glokler J.F. Shining a light on LAMP assays – A comparison of LAMP visualization methods including the novel use of berberine // Biotechniques. 2015. V. 58. № 4. P. 189. doi: 10.2144/000114275
- Mori Y., Nagamine K., Tomita N., Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation // Biochem. Biophys. Res. Com. 2001. V. 289. № 1. P. 150. doi: 10.1006/bbrc.2001.5921
- Shirato K. Detecting amplicons of loop-mediated isothermal amplification // Microbiol. Immunol. 2019. V. 63. № 10. P. 407.doi: 10.1111/1348-0421.12734
- Chatterjee S., Mukhopadhyay S. Recent advances of lateral flow immunoassay components as “point of need” // J. Immunoassay Immunochem. 2022. V. 43. № 6. P. 579.doi: 10.1080/15321819.2022.2122063
- Lai M.Y., Lau Y.L. Detection of Plasmodium knowlesi using recombinase polymerase amplification (RPA) combined with SYBR Green I // Acta Tropica. 2020. V. 208. Article 105511. doi: 10.1016/j.actatropica.2020.105511
- Singpanomchai N., Akeda Y., Tomono K., Tamaru A., Santanirand P., Ratthawongjirakul P. Naked eye detection of the Mycobacterium tuberculosis complex by recombinase polymerase amplification-SYBR green I assays // J. Clin. Lab. Anal. 2019. V. 33. № 2. Article e22655. doi: 10.1002/jcla.22655
- Waman V.P., Vedithi S.C., Thomas S.E., Bannerman B.P., Munir A., Skwark M.J., Malhotra S., Blundell T.L. Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery // Emerg. Microbes Infect. 2019. V. 8. № 1. P. 109. doi: 10.1080/22221751.2018.1561158
- Zheng Y., Hu P., Ren H., Wang H., Cao Q., Zhao Q., Li H., Zhang H., Liu Z., Li Y., Wang C., Liu Z., Lu S. RPA-SYBR Green I based instrument-free visual detection for pathogenic Yersinia enterocolitica in meat // Anal. Biochem. 2021. V. 621. Article 114157.doi: 10.1016/j.ab.2021.114157
- Parida M., Horioke K., Ishida H., Dash P.K., Saxena P., Jana A.M., Islam M.A., Inoue S., Hosaka N., Morita K. Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay // J. Clin. Microbiol. 2005. V. 43. № 6. P. 2895. doi: 10.1128/JCM.43.6.2895-2903.2005
- Hill J., Beriwal S., Chandra I., Paul V.K., Kapil A., Singh T., Wadowsky R.M., Singh V., Goyal A., Jahnukainen T., Johnson J.R., Tarr P.I., Vats A. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli // J. Clin. Microbiol. 2008. V. 46. № 8. P. 2800. doi: 10.1128/JCM.00152-08
- Lai M.Y., Ooi C.H., Lau Y.L. Validation of SYBR green I based closed-tube loop-mediated isothermal amplification (LAMP) assay for diagnosis of knowlesi malaria // Malar. J. 2021. V. 20. № 1. Article 166. doi: 10.1186/s12936-021-03707-0
- Vinayaka A.C., Golabi M., Than T.L.Q., Wolff A., Bang D.D. Point-of-care diagnosis of invasive non-typhoidal Salmonella enterica in bloodstream infections using immunomagnetic capture and loop-mediated isothermal amplification // N. Biotechnol. 2022. V. 66. P. 1 doi: 10.1016/j.nbt.2021.08.003
- Curtis K.A., Rudolph D.L., Owen S.M. Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP) // J. Virol. Methods. 2008. V. 151. № 2. P. 264. doi: 10.1016/j.jviromet.2008.04.011
- Dukes J.P., King D.P., Alexandersen S. Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus // Arch. Virol. 2006. V. 151. № 6. P. 1093. doi: 10.1007/s00705-005-0708-5
- Kottur J., Nair D.T. Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction // Nucleic Acids Res. 2018. V. 46. № 12. P. 5875. doi: 10.1093/nar/gky402.
- Tomita N., Mori Y., Kanda H., Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products // Nat. Protoc. 2008. V. 3. № 5. P. 877. doi: 10.1038/nprot.2008.57
- Mansour S.M., Ali H., Chase C.C., Cepica A. Loop-mediated isothermal amplification for diagnosis of 18 World Organization for Animal Health (OIE) notifiable viral diseases of ruminants, swine and poultry // Anim. Health Res. Rev. 2015. V. 16. № 2. P. 89. doi: 10.1017/S1466252315000018
- Liu H., Yu H., Peng Z.Q., Yu Y.Y., Xie J.F., Yang Y. Visual and rapid detection of Plesiomonas shigelloides using loop-mediated isothermal amplification method // Lett. Appl. Microbiol. 2019. V. 69. № 6. P. 411. doi: 10.1111/lam.13225
- Chen X., Ma K., Yi X., Xiong L., Wang Y., Li S. The rapid and visual detection of methicillin-susceptible and methicillin-resistant Staphylococcus aureus using multiplex loop-mediated isothermal amplification linked to a nanoparticle-based lateral flow biosensor // Antimicrob. Resist. Infect. Control. 2020. V. 9. № 1. Article 111. doi: 10.1186/s13756-020-00774-x
- Chen X., Zhou Q., Wu X., Wang S., Liu R., Dong S., Yuan W. Visual and rapid diagnosis of Neisseria gonorrhoeae using loop-mediated isothermal amplification combined with a polymer nanoparticle-based biosensor in clinical application // Front. Mol. Biosci. 2021. V. 8. Article 702134. doi: 10.3389/fmolb.2021.702134
- Wu C., Zeng Y., He Y. Rapid visualization and detection of Staphylococcus aureus based on loop-mediated isothermal amplification // World J. Microbiol. Biotechnol. 2021. V. 37. № 12. Article 209. doi: 10.1007/s11274-021-03178-0
- Goto M., Honda E., Ogura A., Nomoto A., Hanaki K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue // Biotechniques. 2009. V. 46. № 3. P. 167.doi: 10.2144/000113072
- Tanner N.A., Zhang Y., Evans T.C. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes // Biotechniques. 2015. V. 58. № 2. P. 59. doi: 10.2144/000114253
- Priti, Jangra S., Baranwal V.K., Dietzgen R.G., Ghosh A. A rapid field-based assay using recombinase polymerase amplification for identification of Thrips palmi, a vector of tospoviruses // J. Pest Sci. 2021. V. 94. № 2. P. 219. doi: 10.1007/s10340-020-01284-w
- Nolasco O., Montoya J., Ana L., Barrientos S., Rosanas-Urge A., Gamboa D. Multicopy targets for Plasmodium vivax and Plasmodium falciparum detection by colorimetric LAMP // Malar. J. 2021. V. 20. № 1. Article 225. doi: 10.1186/s12936-021-03753-8
- Cecere P., Gatto F., Cortimiglia C., Bassi D., Lucchini F., Cocconcelli P.S., Pompa P.P. Colorimetric point-of-care detection of Clostridium tyrobutyricum spores in milk samples // Biosensors (Basel). 2021. V. 11. Article 293. doi: 10.3390/bios11090293
- Cibecchini G., Cecere P., Tumino G., Morcia C, Ghizzoni R., Carnevali P., Terzi V., Pompa P.P. A fast, naked-eye assay for varietal traceability in the durum wheat production chain // Foods. 2020. V. 9. № 11. Article 1691. doi: 10.3390/foods9111691
- Aldossary A.M., Tawfik E.A., Altammami M.A., Alquait A.A., Booq R.Y., Sendy B.K., Alarawi M.S., Gojobori T., Altamimi A.M., Alaifan T.A., Albarrag A.M., Alyamani E.J. Development and validation of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) as a simple and rapid diagnostic tool for SARS-CoV-2 detection // Diagnostics (Basel). 2022. V. 12. № 9. Article 2232. doi: 10.3390/diagnostics12092232
- Koczula K.M., Gallotta A. Lateral flow assays // Essays Biochem. 2016. V. 60. № 1. P. 111. doi: 10.1042/EBC20150012
- Kortli S., Jauset-Rubio M., Tomaso H., Abbas M.N., Bashammakh A.S., El-Shahawi M.S., Alyoubi A.O., Ben-Ali M., O’Sullivan C.K. Yersinia pestis detection using biotinylated dNTPs for signal enhancement in lateral flow assays // Anal. Chim. Acta. 2020. V. 1112. P. 54.doi: 10.1016/j.aca.2020.03.059
- Agarwal S., Warmt C., Henkel J., Schrick L, Nitsche A., Bier F.F. Lateral flow-based nucleic acid detection of SARS-CoV-2 using enzymatic incorporation of biotin-labeled dUTP for POCT use // Anal. Bioanal. Chem. 2022. V. 414. № 10. P. 3177. doi: 10.1007/s00216-022-03880-4
- Mayran C., Foulongne V., Perre P.V., Fournier-Wirth C., Molès J.P., Cantaloube J.F. Rapid diagnostic test for hepatitis B virus viral load based on recombinase polymerase amplification combined with a lateral flow read-out // Diagnostics (Basel). 2022. V. 12. № 3. Article 621. doi: 10.3390/diagnostics12030621
- Ivanov A.V., Safenkova I.S., Zherdev A.V., Dzantiev B.B. Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus // Talanta. 2020. V. 210. Article 120616. doi: 10.1016/j.talanta.2019.120616
- Ivanov A.V., Safenkova I.S., Drenova N.V., Zherdev A.V., Dzantiev B.B. Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solani // Mol. Cell. Probes. 2020. V. 53. Article 101622.doi: 10.1016/j.mcp.2020.101622
- Zheng T., Li X., Si Y., Wang M., Zhou Y., Yang Y., Liang N., Ying B., Wu P. Specific lateral flow detection of isothermal nucleic acid amplicons for accurate point-of-care testing // Biosens. Bioelectron. 2023. V. 222. Article 114989. doi: 10.1016/j.bios.2022.114989
- Safenkova I.S., Ivanov A.V., Slutskaya E.S., Samokhvalov A.V., Zherdev A.V., Dzantiev B.B. Key significance of DNA-target size in lateral flow assay coupled with recombinase polymerase amplification // Anal. Chim. Acta. 2020. V. 1102. P. 109.doi: 10.1016/j.aca.2019.12.048
- Chen X., Zhou Q., Li S., Yan H., Chang B., Wang Y., Dong S. Rapid and visual detection of SARS-CoV-2 using multiplex reverse transcription loop-mediated isothermal amplification linked with gold nanoparticle-based lateral flow biosensor // Front. Cell. Infect. Microbiol. 2021. V. 11. Article 581239.doi: 10.3389/fcimb.2021.581239
- Zasada A.A., Mosiej E., Prygiel M., Polak M., Wdowiak K., Formińska K., Ziółkowski R., Żukowski K., Marchlewicz K., Nowiński A., Nowińska J., Rastawicki W., Malinowska E. Detection of SARS-CoV-2 using reverse transcription helicase dependent amplification and reverse transcription loop-mediated amplification combined with lateral flow assay // Biomedicines. 2022. V. 10. № 9. Article 2329. doi: 10.3390/biomedicines10092329
- Srisawat W., Saengthongpinit C., Nuchchanart W. Development of loop-mediated isothermal amplification-lateral flow dipstick as a rapid screening test for detecting Listeria monocytogenes in frozen food products using a specific region on the ferrous iron transport protein B gene // Vet. World. 2022. V. 15. № 3. P. 590. doi: 10.14202/vetworld.2022.590-601
- Wang L., Chen G.F., Zhang C.Y., Wang Y.Y., Sun R. Rapid and sensitive detection of Amphidinium carterae by loop-mediated isothermal amplification combined with a chromatographic lateral-flow dipstick // Mol. Cell. Probes. 2019. V. 43, P. 72.doi: 10.1016/j.mcp.2018.11.001
- Longo M.C., Berninger M.S., Hartley J.L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions // Gene. 1990. V. 93. № 1. P. 125. doi: 10.1016/0378-1119(90)90145-h
- Hsieh K., Mage P.L., Csordas A.T., Eisenstein M., Soh H.T. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP) // Chem. Commun. (Camb.). 2014. V. 50. № 28. P. 3747. doi: 10.1039/c4cc00540f
- Koonin E.V., Makarova K.S., Zhang F. Diversity, classification and evolution of CRISPR-Cas systems // Curr. Opin. Microbiol. 2017. V. 37. P. 67. doi: 10.1016/j.mib.2017.05.008
- Gootenberg J.S., Abudayyeh O.O., Lee J.W., Essletzbichler P., Dy A.J., Joung J., Verdine V., Donghia N., Daringer N.M., Freije C.A., Myhrvold C., Bhattacharyya R.P., Livny J., Regev A., Koonin E.V., Hung D.T., Sabeti P.C., Collins J.J., Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2 // Science. 2017. V. 356. № 6336. P. 438. doi: 10.1126/science.aam9321
- Myhrvold C., Freije C.A., Gootenberg J.S., Abudayyeh O.O., Metsky H.C., Durbin A.F., Kellner M.J., Tan A.L., Paul L.M., Parham L.A., Garcia K.F., Barnes K.G., Chak B., Mondini A., Nogueira M.L., Isern S., Michael S.F., Lorenzana I., Yozwiak N.L., MacInnis B.L., Bosch I., Gehrke L., Zhang F., Sabeti P.C. Field-deployable viral diagnostics using CRISPR-Cas13 // Science. 2018. V. 360. № 6387. P. 444. doi: 10.1126/science.aas8836
- Chang Y., Deng Y., Li T., Wang J., Wang T., Tan F., Li X., Tian K. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a // Transbound. Emerg. Dis. 2020. V. 67. № 2. P. 564. doi: 10.1111/tbed.13368
- Yin D., Yin L., Wang J., Shen X., Pan X., Hou H., Zhao R., Hu X., Wang G., Qi K., Dai Y. Visual detection of duck Tembusu virus with CRISPR/Cas13: A sensitive and specific point-of-care detection // Front. Cell. Infect. Microbiol. 2022. V. 12. Article 848365.doi: 10.3389/fcimb.2022.848365
- An B., Zhang H., Su X., Guo Y., Wu T., Ge Y., Zhu F., Cui L. Rapid and sensitive detection of salmonella spp. using CRISPR-Cas13a combined with recombinase polymerase amplification // Front. Microbiol. 2021. V. 12. Article 732426. doi: 10.3389/fmicb.2021.732426
- Hu F., Liu Y., Zhao S., Zhang Z., Li X., Peng N., Jiang Z. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics // Biosens. Bioelectron. 2022. V. 202. Article 113994. doi: 10.1016/j.bios.2022.113994
- López-Valls M., Escalona-Noguero C., Rodríguez-Díaz C., Pardo D., Castellanos M., Milán-Rois P., Martínez-Garay C., Coloma R., Abreu M., Cantón R., Galán J.C., Miranda R., Somoza Á., Sot B. CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles // Anal. Chim. Acta. 2022. V. 1205. Article 339749. doi: 10.1016/j.aca.2022.339749
- Ortiz-Cartagena C., Fernández-García L., Blasco L., Pacios O., Bleriot I., López M., Cantón R., Tomás M. Reverse transcription-loop-mediated isothermal amplification-CRISPR-Cas13a technology as a promising diagnostic tool for SARS-CoV-2 // Microbiol. Spectr. 2022. V. 10. № 5. Article e0239822. doi: 10.1128/spectrum.02398-22
- Lin K., Guo J., Guo X., Li Q., Li X., Sun Z., Zhao Z., Weng J., Wu J., Zhang R., Li B. Fast and visual detection of nucleic acids using a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM // Anal. Chim. Acta. 2023. V. 1248. Article 340938. doi: 10.1016/j.aca.2023.340938
- Wang P., Guo B., Zhang X., Wang Y., Yang G., Shen H., Gao S., Zhang L. One-pot molecular diagnosis of acute hepatopancreatic necrosis disease by recombinase polymerase amplification and CRISPR/Cas12a with specially designed crRNA // J. Agric. Food Chem. 2023. V. 71. № 16. P. 6490. doi: 10.1021/acs.jafc.2c08689
- Chen J.S., Ma E., Harrington L.B., Da Costa M., Tian X., Palefsky J.M., Doudna J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity // Science. 2018. V. 360. № 6387. P. 436. doi: 10.1126/science.aar6245
- Wang B., Wang R., Wang D., Wu J., Li J., Wang J., Liu H., Wang Y. Cas12aVDet: A CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection // Anal. Chem. 2019. V. 91. № 19. P. 12156. doi: 10.1021/acs.analchem.9b01526
- Xiao Y., Ren H., Wang H., Zou D., Liu Y., Li H., Hu P., Li Y., Liu Z., Lu S. A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system // Talanta. 2023. V. 259. Article 124558. doi: 10.1016/j.talanta.2023.124558
- Jiao J., Liu Y., Yang M., Zheng J., Liu C., Ye W., Song S., Bai T., Song C., Wang M., Shi J., Wan R., Zhang K., Hao P., Feng J., Zheng X. The engineered CRISPR-Mb2Cas12a variant enables sensitive and fast nucleic acid-based pathogens diagnostics in the field // Plant Biotechnol. J. 2023. V. 21. P. 1465. doi: 10.1111/pbi.14051
- Jiang T., Hu X., Lin C., Xia Z., Yang W., Zhu Y., Xu H., Tang H., Shen J. Rapid visualization of Clostridioides difficile toxins A and B by multiplex RPA combined with CRISPR-Cas12a // Front. Microbiol. 2023. V. 14. Article 1119395. doi: 10.3389/fmicb.2023.1119395
- Deng L., He X., Liu K., Li Y., Xia H., Qian H., Lu X., Mao X., Xiang Y. One-pot RPA-Cas12a assay for instant and visual detection of Burkholderia pseudomallei // Anal. Chim. Acta. 2023. V. 1252. Article 341059. doi: 10.1016/j.aca.2023.341059
- Hao J., Xie L., Yang T., Huo Z., Liu G., Liu Y., Xiong W., Zeng Z. Naked-eye on-site detection platform for Pasteurella multocida based on the CRISPR-Cas12a system coupled with recombinase polymerase amplification // Talanta. 2023. V. 255. Article 124220. doi: 10.1016/j.talanta.2022.124220
- Aman R., Mahas A., Marsic T., Hassan N., Mahfouz M.M. Efficient, rapid, and sensitive detection of plant RNA viruses with one-pot RT-RPA-CRISPR/Cas12a Assay // Front. Microbiol. 2020. V. 11. Article 610872. doi: 10.3389/fmicb.2020.610872
- Liu S., Tao D., Liao Y., Yang Y., Sun S., Zhao Y., Yang P., Tang Y., Chen B., Liu Y., Xie S., Tang Z. Highly sensitive CRISPR/Cas12a-Based fluorescence detection of porcine reproductive and respiratory syndrome virus // ACS Synth. Biol. 2021. V. 10. № 10. P. 2499. doi: 10.1021/acssynbio.1c00103
- Xiong Y., Cao G., Chen X., Yang J., Shi M., Wang Y., Nie F., Huo D., Hou C. One-pot platform for rapid detecting virus utilizing recombinase polymerase amplification and CRISPR/Cas12a // Appl. Microbiol. Biotechnol. 2022. V. 106. № 12. P. 4607.doi: 10.1007/s00253-022-12015-9
- Qin C., Liu J., Zhu W., Zeng M., Xu K., Ding J., Zhou H., Zhu J., Ke Y., Li L.Y., Sheng G., Li Z., Luo H., Jiang S., Chen K., Ding X., Meng H. One-pot visual detection of african swine fever virus using CRISPR-Cas12a // Front. Vet. Sci. 2022. V. 9. Article 962438. doi: 10.3389/fvets.2022.962438
- Lin M., Yue H., Tian T., Xiong E., Zhu D., Jiang Y., Zhou X. Glycerol additive boosts 100-fold sensitivity enhancement for one-pot RPA-CRISPR/Cas12a assay // Anal. Chem. 2022. V. 94. № 23. P. 8277. doi: 10.1021/acs.analchem.2c00616
- Shao F., Park J.S., Zhao G., Hsieh K., Wang T.H. Elucidating the role of CRISPR/Cas in single-step isothermal nucleic acid amplification testing assays // Anal. Chem. 2023. V. 95. № 7. P. 3873. doi: 10.1021/acs.analchem.2c05632
- Tang G., Zhang Z., Tan W., Long F., Sun J., Li Y., Zou S., Yang Y., Cai K., Li S., Wang Z., Liu J., Mao G., Ma Y, Zhao G.P., Tian Z.G., Zhao W. RT-RPA-Cas12a-based assay facilitates the discrimination of SARS-CoV-2 variants of concern // Sens. Actuators B: Chem. 2023. V. 381. Article 133433. doi: 10.1016/j.snb.2023.133433
- Zhu Y., Lin C., Xu H., Xia Z., Yang W., Tang H., Hu X., Jiang T., Liu Z., Shen J. Establishment and methodological evaluation of a method for rapid detection of helicobacter pylori and virulence genes based on CRISPR-Cas12a // Infect. Drug Resist. 2023. V. 16. P. 435. doi: 10.2147/idr.s398098
- Jiao J., Kong K., Han J., Song S., Bai T., Song C., Wang M., Yan Z., Zhang H., Zhang R., Feng J., Zheng X. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay // Plant Biotechnol. J. 2021. V. 19. № 2. P. 394. doi: 10.1111/pbi.13474
- Zhang W.S., Pan J., Li F., Zhu M., Xu M., Zhu H., Yu Y., Su G. Reverse transcription recombinase polymerase amplification coupled with CRISPR-Cas12a for facile and highly sensitive colorimetric SARS-CoV-2 detection // Anal. Chem. 2021. V. 93. № 8. P. 4126. doi: 10.1021/acs.analchem.1c00013
- Wei L., Wang Z., Wang J., Wang X., Chen Y. Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification // Anal. Chim. Acta. 2022. V. 1230. Article 340357. doi: 10.1016/j.aca.2022.340357
- Qian C., Wang R., Wu H., Zhang F., Wu J., Wang L. Uracil-mediated new photospacer-adjacent motif of Cas12a to realize visualized DNA detection at the single-copy level free from contamination // Anal. Chem. 2019. V. 91. № 17. P. 11362. doi: 10.1021/acs.analchem.9b02554
- Chen Y., Shi Y., Chen Y., Yang Z., Wu H., Zhou Z., Li J., Ping J., He L., Shen H., Chen Z., Wu J., Yu Y., Zhang Y., Chen H. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection // Biosens. Bioelectron. 2020. V. 169. Article 112642. doi: 10.1016/j.bios.2020.112642
- Wang R., Qian C., Pang Y., Li M., Yang Y., Ma H., Zhao M., Qian F., Yu H., Liu Z., Ni T., Zheng Y., Wang Y. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection // Biosens. Bioelectron. 2021. V. 172. Article 112766. doi: 10.1016/j.bios.2020.112766
- Pang B., Xu J., Liu Y., Peng H., Feng W., Cao Y., Wu J., Xiao H., Pabbaraju K., Tipples G., Joyce M.A., Saffran H.A., Tyrrell D.L., Zhang H., Le X.C. Isothermal amplification and ambient visualization in a single tube for the detection of SARS-CoV-2 using loop-mediated amplification and CRISPR technology // Anal. Chem. 2020. V. 92. № 24. P. 16204. doi: 10.1021/acs.analchem.0c04047
- Park B.J., Park M.S., Lee J.M., Song Y.J. Specific detection of influenza A and B viruses by CRISPR-Cas12a-based assay // Biosensors (Basel). 2021. V. 11. № 3. Article 88. doi: 10.3390/bios11030088
- Ding R., Long J., Yuan M., Zheng X., Shen Y., Jin Y., Yang H., Li H., Chen S., Duan G. CRISPR/Cas12-based ultra-sensitive and specific point-of-care detection of HBV // Int. J. Mol. Sci. 2021. V. 22. № 9. Article 4842. doi: 10.3390/ijms22094842
- Cao Y., Wu J., Pang B., Zhang H., Le X.C. CRISPR/Cas12a-mediated gold nanoparticle aggregation for colorimetric detection of SARS-CoV-2 // Chem. Commun. (Camb.). 2021. V. 57. № 56. P. 6871. doi: 10.1039/d1cc02546e
- Figueiredo D., Cascalheira A., Goncalves J. Rapid, multiplex detection of SARS-CoV-2 using isothermal amplification coupled with CRISPR-Cas12a // Sci. Rep. 2023. V. 13. № 1. Article 849. doi: 10.1038/s41598-022-27133-7
- Su G., Zhu M., Li D., Xu M., Zhu Y., Zhang Y., Zhu H., Li F., Yu Y. Multiplexed lateral flow assay integrated with orthogonal CRISPR-Cas system for SARS-CoV-2 detection // Sens. Actuators B: Chem. 2022. V. 371. Article 132537.doi: 10.1016/j.snb.2022.132537
- Li L., Li S., Wu N., Wu J., Wang G., Zhao G., Wang J. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation // ACS Synth. Biol. 2019. V. 8. № 10. P. 2228. doi: 10.1021/acssynbio.9b00209
- Nguyen L.T., Macaluso N.C., Pizzano B.L.M., Cash M.N., Spacek J., Karasek J., Miller M.R., Lednicky J.A., Dinglasan R.R., Salemi M., Jain P.K. A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern // eBioMedicine. 2022. V. 77. Article 103926. doi: 10.1016/j.ebiom.2022.103926
- Song J., El-Tholoth M., Li Y., Graham-Wooten J., Liang Y., Li J., Li W., Weiss S.R., Collman R.G., Bau H.H. Single- and two-stage, closed-tube, point-of-care, molecular detection of SARS-CoV-2 // Anal. Chem. 2021. V. 93. № 38. P. 13063.doi: 10.1021/acs.analchem.1c03016
- Seok Y., Yin Q., Bai H., Bau H.H. Sensitive, single-pot, two-stage assay for hepatitis viruses // Anal. Chem. 2022. V. 94. № 3. P. 1778. doi: 10.1021/acs.analchem.1c04480
Arquivos suplementares
