Determination of isoniazid by photometric method through covalent binding with carbocyanine dye

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Substitution reactions in carbocyanine dyes are used to determine nucleophilic compounds. The interaction of a chlorine-containing carbocyanine with a number of medicinal substances has been studied. It was shown that in the reaction with isoniazid in the presence of surfactants, this dye selectively changes color from yellow-green to purple. Chromatography-mass spectrometry has proven the formation of the substitution product of chlorine with isoniazid. The reaction occurs within 20 minutes in the presence of 1 mM cetyltrimethylammonium bromide. The detection limit of isoniazid in water by photometric method was 10 µg/mL; in diluted artificial urine using fluorimetry, it was 0.3 µg/mL. The method does not require full-spectrum equipment, which simplifies the determination.

Texto integral

Acesso é fechado

Sobre autores

E. Skorobogatov

M. V. Lomonosov Moscow State University

Autor responsável pela correspondência
Email: skoregy@gmail.com

Department of Chemistry

Rússia, 119991 Moscow

Yu. Timchenko

M. V. Lomonosov Moscow State University

Email: skoregy@gmail.com

Department of Chemistry

Rússia, 119991 Moscow

I. Doroshenko

M. V. Lomonosov Moscow State University

Email: skoregy@gmail.com

Department of Chemistry

Rússia, 119991 Moscow

T. Podrugina

M. V. Lomonosov Moscow State University

Email: skoregy@gmail.com

Department of Chemistry

Rússia, 119991 Moscow

I. Rodin

M. V. Lomonosov Moscow State University

Email: skoregy@gmail.com

Department of Chemistry

Rússia, 119991 Moscow

M. Beklemishev

M. V. Lomonosov Moscow State University

Email: skoregy@gmail.com
Rússia, 119991 Moscow

Bibliografia

  1. Liu Y., Yu Y., Zhao Q., Tang C., Zhang H., Qin Y., Feng X., Zhang J. Fluorescent probes based on nucleophilic aromatic substitution reactions for reactive sulfur and selenium species: Recent progress, applications, and design strategies // Coord. Chem. Rev. 2021. V. 427. Article 213601.
  2. Gopika G.S., Prasad P.H., Lekshmi A.G., Lekshmypriya S., Sreesaila S., Arunima C., Malavika S.K., Anil A., Sreekumar A., Pillai Z.S. Chemistry of cyanine dyes // Mater. Today Proc. 2021. V. 46. P. 3102.
  3. Gorka A.P., Nani R.R., Schnermann M.J. Harnessing cyanine reactivity for optical imaging and drug delivery // Acc. Chem. Res. 2018. V. 51. P. 3226.
  4. Ernst L.A., Gupta R.K., Mujumdar R.B., Waggoner A.S. Cyanine dye labeling reagents for sulfhydryl groups // Cytometry. 1989. V. 10. P. 3.
  5. Wang X., Lv J., Yao X., Li Y., Huang F., Li M., Huang F., Li M., Yang J., Ruana X., Tang B. Screening and investigation of a cyanine fluorescent probe for simultaneous sensing of glutathione and cysteine under single excitation // Chem. Comm. 2014. V. 50. P. 15439.
  6. Sun Y., Fan S., Zhang S., Zhao D., Duan L., Li R. A fluorescent turn-on probe based on benzo[e]indolium for bisulfite through 1, 4-addition reaction // Sens. Actuators B. 2014. V. 193. P. 173.
  7. Seifart H.I., Gent W.L., Parkin D.P., van Jaarsveld P.P., Donaid P.R. High-performance liquid chromatographic determination of isoniazid, acetylisoniazid and hydrazine in biological fluids // J. Chromatogr. B. 1995. V. 674. P. 269.
  8. Bergamini M.F., Santos D.P., Zanoni M.V.B. Determination of isoniazid in human urine using screen-printed carbon electrode modified with poly-L-histidine // Bioelectrochemistry. 2010. V. 77. P. 133.
  9. Safavi A., Karimi M.A., Hormozi Nezhad M.R., Kamali R., Saghir N. Sensitive indirect spectrophotometric determination of isoniazid // Spectrochim. Acta A. 2004. V. 60. P. 765.
  10. Lapa R.A.S., Lima J.L.F.C., Santos J.L.M. Fluorimetric determination of isoniazid by oxidation with cerium (IV) in a multicommutated flow system // Anal. Chim. Acta. 2000. V. 419. P. 17.
  11. Wen X.R., Tu C.Q. Spectrophotometric determination of isoniazid in pharmaceutical sample by silicomolybdenum blue // Adv. Mat. Res. 2014. V. 1033. P. 548.
  12. Zhang H., Wu L., Li Q., Du X. Determination of isoniazid among pharmaceutical samples and the patients’ saliva samples by using potassium ferricyanide as spectroscopic probe reagent // Anal. Chim. Acta. 2008. V. 628. P. 67.
  13. Espinosa-Mansilla A., Acedo-Valenzuela M.I., De La Peña A.M., Cañada F.C., López F.S. Determination of antitubercular drugs in urine and pharmaceuticals by LC using a gradient flow combined with programmed diode array photometric detection // Talanta. 2002. V. 58. P. 273.
  14. Okoh O.A., Bisby R.H., Lawrence C.L., Rolph C.E., Smith R.B. Promising near-infrared non-targeted probes: Benzothiazole heptamethine cyanine dyes // J. Sulfur Chem. 2014. V. 35. P. 42.
  15. Doroshenko I.A., Aminulla K.G., Azev V.N., Kulinich T.M., Vasilichin V.A., Shtil A.A., Podrugina T.A. Synthesis of modified conformationally fixed tricarbocyanine dyes for conjugation with therapeutic agents // Mendeleev Commun. 2021. V. 31. P. 615.
  16. Sarigul N., Korkmaz F., Kurultak İ. A new artificial urine protocol to better imitate human urine // Sci. Rep. 2019. Т. 9. №. 1. С. 20159.
  17. Njiojob C.N., Owens E.A., Narayana L., Hyun H., Choi H.S., Henary M. Tailored Near-Infrared Contrast Agents for Image Guided Surgery // J. Med. Chem. 2015. V. 58. P. 2845.
  18. Евгеньев М.И., Гармонов С.Ю., Зайнутдинов Л.А., Маланичева Т.Г. Неинвазивный метод определений биохимического фенотипа ацетилирования // Казанский мед. журн. 2004. №. 5. С. 388.
  19. Гаевая Л.В. Вопросы фармакокинетики и фармакодинамики изониазида // Клиническая инфектология и паразитология. 2015. №. 2. С. 15.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Structural formulas of dyes; (a) – dye 1, (b) – IR-783.

Baixar (126KB)
3. Scheme 2. Substitution of a chlorine atom in a dye.

Baixar (70KB)
4. Fig. 1. (a) – Intensity of the green channel (G) in photographs of a plate with the dye-CTAB system in the presence of various drugs (1 mM), reaction duration 20 min; (b) – example of a photograph of a fluorimetric plate, the cell of the system with isoniazid is marked in red.

Baixar (886KB)
5. Fig. 2. (a) – Absorption spectra of the dye-isoniazid mixture at the initial time (1) and 20 min after the start of the reaction (3); the dye-CTAB-isoniazid mixture at the initial time (2), after 20 min (4) and 90 min (5); (b) – near-IR fluorescence spectra of the dye-CTAB-isoniazid-artificial urine system at the initial time in the presence of 1 mM isoniazid (1) and after 20 min (5); and the dye-CTAB-isoniazid-artificial urine system at the initial time in the presence of 0.1 mM isoniazid at the initial time (2), after 20 min (3) and 90 min (4).

Baixar (269KB)
6. Fig. 3. Dependence of the green channel intensity (G) for the dye–CTAB and dye–CTAB–isoniazid systems on pH (1 – in the absence of isoniazid, 2 – in the presence of 1 mM isoniazid). Reaction duration is 20 min.

Baixar (94KB)
7. Fig. 4. Dependence of the intensity of the green channel (G) of the dye–CTAB–isoniazid system on the concentration of CTAB for 1 mM isoniazid: 1 – in the absence of isoniazid, 2 – in the presence of 1 mM isoniazid; control samples (without CTAB) are marked in black. The reaction duration is 20 min.

Baixar (113KB)
8. Fig. 5. Effect of medicinal substances (1 mM) in dye–CTAB (blue columns) and dye–CTAB-isoniazid (1 mM isoniazid, red columns) systems on the intensity of the green channel. Control – systems without interfering compounds. Reaction duration is 20 min.

Baixar (750KB)
9. Fig. 6. Dependence of fluorescence intensity in the near IR region of the spectrum for dye–CTAB and dye–CTAB–isoniazid systems on pH: 1 – in the absence of isoniazid, 2 – in the presence of 1 mM isoniazid. Reaction duration is 20 min.

Baixar (77KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024