Voltammetric sensors based on mesoporous graphitized carbon black and cyclopentadiene derivatives for determination and recognition of clopidogrel enantiomers
- Авторлар: Nazyrov M.I.1, Perfilova Y.A.1, Abdullin Y.R.1, Kovyazin P.V.2, Maistrenko V.N.1
-
Мекемелер:
- Ufa University of Science and Technology
- Institute of Petrochemistry and Catalysis
- Шығарылым: Том 79, № 6 (2024)
- Беттер: 591-602
- Бөлім: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 31.01.2025
- URL: https://snv63.ru/0044-4502/article/view/650207
- DOI: https://doi.org/10.31857/S0044450224060068
- EDN: https://elibrary.ru/tubyts
- ID: 650207
Дәйексөз келтіру
Аннотация
To recognize and determine the enantiomers of clopidogrel, a sensor system based on a glassy carbon electrode modified with Carbopack X mesoporous carbon black and cyclopentadiene derivatives – (1S)-2-cyclopenta-2,4-dien-1-yl-1,7,7-trimethylbicyclo[2.2.1]heptane; (1S, 2S, 4R)-2-cyclopenta-1,3-dien-1-yl-1-isopropyl-4-methylcyclohexane; 9-[(1S,2S,5R)-2-isopropyl-5-methylcyclohexyl]-9H-fluorene. Due to the unique properties of Carbopack X, such as large surface area and high conductivity, it was possible to obtain a mechanically stable and sensitive sensor layer that firmly retains chiral selector molecules on its surface. The morphological, electrochemical and analytical properties of the obtained sensors were studied by scanning electron microscopy, electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The determination of clopidogrel enantiomers in biological fluids has been carried out; linear dependences of oxidation peak currents on their concentration in solution for all sensors are preserved in the concentration range from 1 × 10–6 to 5 × 10–4 M. The sensors are cross-sensitized, which allowed combining them into a sensor system with high enantioselectivity and sensitivity towards clopidogrel enantiomers. With the proposed sensor system, the probability of correctly recognizing samples increases compared to single sensors. In all cases, the content of R-clopidogrel in the mixture is correctly determined with a relative error not exceeding 9% and a degree of discovery ranging from 96 to 102%.
Авторлар туралы
M. Nazyrov
Ufa University of Science and Technology
Хат алмасуға жауапты Автор.
Email: mnazyrov@list.ru
Institute of Chemistry and Protection in Emergency Situations
Ресей, 450076 UfaYu. Perfilova
Ufa University of Science and Technology
Email: mnazyrov@list.ru
Institute of Chemistry and Protection in Emergency Situations
Ресей, 450076 UfaYa. Abdullin
Ufa University of Science and Technology
Email: mnazyrov@list.ru
Institute of Chemistry and Protection in Emergency Situations
Ресей, 450076 UfaP. Kovyazin
Institute of Petrochemistry and Catalysis
Email: mnazyrov@list.ru
Ресей, 450075 Ufa
V. Maistrenko
Ufa University of Science and Technology
Email: mnazyrov@list.ru
Institute of Chemistry and Protection in Emergency Situations
Ресей, 450076 UfaӘдебиет тізімі
- Herbert J.M., Savi P. P2Y12, a new platelet ADP receptor, target of clopidogrel // Semin. Vasc. Med. 2003. V. 3. P. 113. https://doi.org/10.1055/s-2003-40669
- Pereillo J.M., Maftouh M., Andrieu A., Uzabiaga M.F., Fedeli O., Savi P., et al. Structure and stereochemistry of the active metabolite of clopidogrel // Drug Metab. Dispos. 2002. V. 30. P. 1288. https://doi.org/10.1124/dmd.30.11.1288
- Richter T., Murdter T.E., Heinkele G., Poleis J., Tatzel S., Schwab M., et al. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine // J. Pharmacol. Exp. Ther. 2004. V. 308. P. 189. https://doi.org/10.1124/jpet.103.056127
- The United States pharmacopeial convention. United States Pharmacopeia, 28th Ed. Rockville, Maryland, USA: United States Pharmacopeial Convention, 2005. 516 p.
- Reist M., Vos M.R., Montseny J.P., Mayer J.M., Carrupt P.A., Berger Y., Testa B. Very slow chiral inversion of clopidogrel in rats: A pharmacokinetic and mechanistic investigation // Drug Metab. Dispos. 2000. V. 28. P. 1405.
- Gomez Y., Adams E., Hoogmartens J. Analysis of purity in 19 drug product tablets containing clopidogrel: 18 copies versus the original brand // J. Pharm. Biomed. Anal. 2004. V. 34. P. 341. https://doi.org/10.1016/S0731-7085(03)00533-8
- Fayed A.S., Weshahy S.A., Shehata M.A., Hassan N.Y., Pauwels J., Hoogmartens J., Schepdael A.V. Separation and determination of clopidogrel and its impurities by capillary electrophoresis // J. Pharm. Biomed. Anal. 2009. V. 49. P. 193. https://doi.org/10.1016/j.jpba.2008.10.031
- Mladenovic A.R., Jovanovic V.M., Petrovic S.D., Mijin D.Z., Drmanic S., Ivic M.L.A. Determination of clopidogrel using square wave voltammetry at a gold electrode // J. Serb. Chem. Soc. 2013. P. 78. P. 2131. https://doi.org/10.2298/JSC130913116M
- Dizavandi Z.R., Aliakbar A., Sheykhan M. Electrocatalytic determination of clopidogrel using Bi2O3-pp-AP/GCE by differential pulse voltammetry in pharmaceutical productions // J. Electroanal. Chem. 2017. P. 805.
- Alghamdi A.F. Electrochemical and chromatographic studies of clopidogrel using cathodic stripping voltammetry and HPLC under new experimental conditions and its determination in the preparation tablet, urine and plasma samples // J. Chem. Pharm. Res. 2015. V. 7. P. 1023.
- Sharad S.U., Pramod K.K., Ashwini K.S. Enantioselective biomimetic sensor for discrimination of R and S-Clopidogrel promoted by β-cyclodextrin complexes employing graphene and platinum nanoparticle modified carbon paste electrode // J. Electroanal. Chem. 2019. V. 840. P. 305. https://doi.org/10.1016/j.jelechem.2019.03.068
- Boulet L., Faure P., Flore P., Monteremal J., Ducros V. Simultaneous determination of tryptophan and 8 metabolites in human plasma by liquid chromatography/tandem mass spectrometry // J. Chromatog. B. 2017. V. 1054. P. 36. https://doi.org/10.1016/j.chromb.2017.04.010
- Ashwin B.C.M.A., Shanmugavelan P., Mareeswaran P.M. Electrochemical aspects of cyclodextrin, calixarene and cucurbituril inclusion complexes // J. Incl. Phen. Macrocycl. Chem. 2020. V. 98. P. 149. https://doi.org/10.1007/s10847-020-01028-4
- Khan S.B., Lee S.L. Supramolecular chemistry: Host–guest molecular complexes // Molecules. 2021. V. 26. P. 3995. https://doi.org/10.3390/molecules2613399
- Niu X., Mo Z., Yang X., Sun M., Zhao P., Li Z., et al. Advances in the use of functional composites of beta-cyclodextrin in electrochemical sensors // Microchim. Acta. 2018. V. 185. P. 328. https://doi.org/10.1007/s00604-018- 2859-6
- Zilberg R.A., Maistrenko V.N., Kabirova L.R., Dubrovsky D.I. Selective voltammetric sensors based on composites of chitosan polyelectrolyte complexes with cyclodextrins for the recognition and determination of atenolol enantiomers // Anal. Methods. 2018. V. 10. P. 1886. https://doi.org/10.1039/c8ay00403j
- Zilberg R.A., Maistrenko V.N., Yarkaeva Yu.A., Dubrovsky D.I. An enantioselective voltammetric sensor system based on glassy carbon electrodes modified by polyarylenephthalide composites with cyclodextrins for recognizing D- and L-tryptophans // J. Anal. Chem. 2019. V. 74. P. 1237. https://doi.org/10.1134/S1061934819110133
- Moein M.M. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade // Talanta. 2020. V. 224. P. 121. https://doi.org/10.1016/j.talanta.2020.121794
- Rutkowska M., Płotka-Wasylka J., Morrison C., Wieczorek P.P., Namieśnik J., Marć M. Application of molecularly imprinted polymers in analytical chiral separations and analysis // Trends Anal. Chem. 2018. V. 102. P. 91. https://doi.org/10.1016/j.trac.2018.01.011
- Zhong C., Yang B., Jiang X., Li J. Current progress of nanomaterials in molecularly imprinted electrochemical sensing // Crit. Rev. Anal. Chem. 2018. V. 48. P. 15. https://doi.org/10.1080/10408347.2017.1360762
- Canfarotta F., Rapini R., Piletsky S. Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers // Curr. Opin. Electrochem. 2018. V. 7. P. 146. https://doi.org/10.1016/j.coelec.2017.11.018
- Ma W., Xu L.G., Wang L.B., Xu C.L., Kuang H. Chirality-based biosensors // Adv. Func. Mater. 2019. V. 29. Article 1805512. https://doi.org/10.1002/adfm.201805512
- Wattanakit C., Kuhn A. Encoding chiral molecular information in metal structures // Chem. Eur. J. 2019. V. 26. P. 2993. https://doi.org/10.1002/chem.201904835
- Chen L.J., Yang H.B., Shionoya M. Chiral metallosupramolecular architectures // Chem. Soc. Rev. 2017. V. 46 P. 2555. https://doi.org/10.1039/c7cs00173h
- Zhuo C., Wen Y., Wu X. Strategies to construct homochiral metal-organic frameworks: Ligands selection and practical techniques // Cryst. Eng. Comm. 2016. V. 18. P. 2792. https://doi.org/10.1039/C5CE02593A
- Chuang C.H., Kung C.W. Metal-organic frameworks toward electrochemical sensors: Challenges and opportunities // Electroanalysis. 2020. V. 32. P. 1885. https://doi.org/10.1002/elan.202060111
- Tashiro S., Shionoya M. Novel porous crystals with macrocycle-based well-defined molecular recognition sites // Acc. Chem. Res. 2020. V. 53. P. 632. https://doi.org/10.1021/acs.accounts.9b00566
- Attard G.A. Electrochemical studies of enantioselectivity at chiral metal surfaces // J. Phys. Chem. B. 2001. V. 105. P. 3158. https://doi.org/10.1021/jp0041508
- Arnaboldi S., Magni M., Mussini P.R. Enantioselective selectors for chiral electrochemistry and electroanalysis: Stereogenic elements and enantioselection performance // Curr. Opin. Electrochem. 2018. V. 8. P. 60. https://doi.org/10.1016/J.COELEC.2018.01.002
- Wattanakit C., Kuhn A. Encoding chiral molecular information in metal structures // Chem. Eur. J. 2019. V. 26. P. 2993. https://doi.org/10.1002/chem.201904835
- Zagitova L.R., Maistrenko V.N., Yarkaeva Yu.A., Zagitov V.V., Zilberg R.A., Kovyazin P.V., Parfenova L.V. Novel chiral voltammetric sensor for tryptophan enantiomers based on 3-neomenthylindene as recognition element // J. Electroanal. Chem. 2021. V. 880. Article 114939. https://doi.org/10.1016/j.jelechem.2020.114939
- Zagitova L.R., Yarkaeva Yu.A., Zagitov V.V., Nazyrov M.I., Gainanova S.I., Maistrenko V.N. Voltammetric chiral recognition of naproxen enantiomers by N-tosylproline functionalized chitosan and reduced graphene oxide based sensor // J. Electroanal. Chem. 2022. V. 922. P. 11674. https://doi.org/10.1016/j.jelechem.2022.116744
- Yarkaeva Yu.A., Nazyrov M.I., Abdullin Y.R., Kovyazin P.V., Maistrenko V.N. Enantioselective voltammetric sensor based on mesoporous graphitized carbon black Carbopack X and fulvene derivative // Chirality. 2023. V. 35. № 9. P. 625. https://doi.org/10.1002/chir.23563
- Goyal R.N., Gupta V.K., Bachheti N. Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone – An anabolic steroid used in doping // Anal. Chim. Acta. 2007. V. 597. P. 82. https://doi.org/10.1016/j.aca.2007.06.017
- Esbensen K.H. Multivariate Analysis – In Practice. Oslo: CAMO Process AS, 2001. 597 с.
- Pomerantsev A.L. Chemometrics in Excel. New York: Wiley, 2014. 313 с.
- Yarkaeva Yu.A., Maistrenko V.N., Zagitova L.R., Nazyrov M.I., Berestova T.V. Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers // J. Electroanal. Chem. 2021. V. 903. Article 115839. https://doi.org/10.1016/j.jelechem.2021.115839
- Zagitova L.R., Maistrenko V.N., Yarkaeva Yu.A., Zagitov V.V., Zilberg R.A., Kovyazin P.V., Parfenova L.V. Novel chiral voltammetric sensor for tryptophan enantiomers based on 3-neomenthylindene as recognition element // J. Electroanal. Chem. 2021. V. 880. Article 114939. https://doi.org/10.1016/j.jelechem.2020.114939
- Яркаева Ю.А., Исламуратова Е.Н., Загитова Л.Р., Гуськов В.Ю., Зильберг Р.А., Майстренко В.Н. Cенсор для распознавания и определения энантиомеров триптофана на основе модифицированного энантиоморфными кристаллами бромтрифенилметана угольно-пастового электрода // Журн. аналит. химии. 2021. Т. 76. № 11. С. 1038. https://doi.org/10.31857/S0044450221110177 (Yarkaeva Y.A., Islamuratova E.N., Zagitova L.R., Gus'kov V.Y., Zil'berg R.A., Maistrenko V.N. A sensor for the recognition and determination of tryptophan enantiomers based on carbon-paste electrode modified by enantiomorphic crystals of bromotriphenylmethane // J. Anal. Chem. 2021. V. 76. № 11. P. 1345. https://doi.org/10.1134/S1061934821110162)
- Zilberg R.A., Sidelnikov A.V., Maistrenko V.N., Yarkaeva Y.A., Khamitov E.M., Kornilov V.M., Maksutova E.I. Voltammetric sensory system for recognition of propranolol enantiomers based on glassy carbon electrodes modified by polyarylenephthalide composites of melamine and cyanuric acid // Electroanalysis. 2018. V. 30. P. 619. https://doi.org/10.1002/elan.201700404
- Cesarotti E., Kagan H.B., Goddard R., Krüger C. Synthesis of new ligands for transition metal complexes: Menthyl- and neomenthyl-cyclopentadienes // J. Organomet. Chem. 1978. V. 162. P. 297. https://doi.org/10.1016/S0022-328X(00)81401-1
- Silver S., Puranen A., Sjöholm R., Repo T., Leino R. Chiral indenes and group-4 metallocene dichlorides containing- and pinenyl-derived ligand substituents: synthesis and catalytic applications in polymerization and carboalumination reactions // Eur. J. Inorg. Chem. 2005. V. 2005. № 8. P. 1514. https://doi.org/10.1002/ejic.200400882
- Erker G., Aulbach M., Knickmeier M., Wingbermuhle D., Krueger C., Nolte M., Werner S. The role of torsional isomers of planarly chiral nonbridged bis(indenyl)metal type complexes in stereoselective propene polymerization // J. Am. Chem. Soc. 1993. V. 115. No.11. P.4590. https://doi.org/10.1021/ja00064a022.
- Lasia A. Electrochemical Impedance Spectroscopy and its Applications. New York, NY: Springer New York. 2014. 367 с.
- Зильберг Р.А., Яркаева Ю.А., Максютова Э.И., Сидельников А.В., Майстренко В.Н. Вольтамперометрическая идентификация инсулина и его аналогов с использованием модифицированных полиариленфталидами стеклоуглеродных электродов // Журн. аналит. химии. 2017. Т. 72. № 4. С. 348. https://doi.org/10.7868/S004445021704020X (Zil’berg R.A., Yarkaeva Yu.A., Maksyutova E.I., Sidel’nikov A.V., Maistrenko V.N. Voltammetric identification of insulin and its analogues using glassy carbon electrodes modified with polyarylenephthalides // J. Anal. Chem. 2017. V. 72. № 4. P. 402. https://doi.org/10.1134/S1061934817040177)
- Зильберг Р.А., Яркаева Ю.А., Сидельников А.В., Майстренко В.Н., Крайкин В.А., Гилева Н.Г. Вольтамперометрическое определение бисопролола на модифицированном полиариленфталидами стеклоуглеродном электроде // Журн. аналит. химии. 2016. Т. 71. № 9. С. 964. https://doi.org/10.7868/S004445021609019X (Zil’berg R.A., Yarkaeva Yu.A., Sidel’nikov A.V., Maistrenko V.N., Kraikin V.A., Gileva N.G. Voltammetric determination of bisoprolol on a glassy carbon electrode modified by poly(arylene phthalide) // J. Anal. Chem. 2016. V. 71. № 9. P. 926. https://doi.org/10.1134/S1061934816090173)
- Сидельников А.В., Зильберг Р.А., Яркаева Ю.А., Майстренко В.Н., Крайкин В.А. Вольтамперометрическая идентификация антиаритмических лекарственных средств с использованием метода главных компонент // Журн. аналит. химии. 2015. Т. 70. № 10. С. 1095. https://doi.org/10.7868/S0044450215100151 (Sidel’nikov A.V., Zil’berg R.A., Yarkaeva Yu.A., Maistrenko V.N., Kraikin V.A. Voltammetric identification of antiarrhythmic medicines using principal component analysis // J. Anal. Chem. 2015. V. 70. № 10. P. 1261. https://doi.org/10.1134/S1061934815100159)
- Esbensen K.H. Multivariate Data Analysis – In Practice. CAMO Process. 2002. 158 с.
Қосымша файлдар
