Voltammetric determination of levofloxacin in meat and milk using a sensor based on electrically reduced graphene oxide and functionalized fullerene
- Authors: Abramov I.A.1, Gainanova S.I.1, Zagitova L.R.1, Maistrenko V.N.1
-
Affiliations:
- Ufa University of Science and Technology
- Issue: Vol 79, No 6 (2024)
- Pages: 583-590
- Section: ORIGINAL ARTICLES
- Submitted: 31.01.2025
- URL: https://snv63.ru/0044-4502/article/view/650206
- DOI: https://doi.org/10.31857/S0044450224060057
- EDN: https://elibrary.ru/tuhbfp
- ID: 650206
Cite item
Abstract
Antibacterial drugs have become an integral part of the food industry and agriculture in the modern world. The presence of even trace amounts of antibiotics in food of animal origin can lead to the development of allergic reactions and direct toxic effects in the human body. In this regard, it is required to create sensitive and selective methods for the determination of antibacterial drugs in order to prevent their excessive consumption. In this work, a glass-carbon voltammetric sensor based on layer-by-layer deposited electrospun graphene oxide and functionalized S-N,N’-bis(1-phenylethyl)malonamide fullerene is proposed for the determination of levofloxacin (Lev, S-(-)-ofloxacin) by differential pulse voltammetry. The calibration plot is linear over two ranges of 1.0 × 10-6 -6.0 × 10-5 M and 6.0 × 10-5 -5.0 × 10-4 M Lev with sensitivity factors of 107 and 58.0 μA/mM, respectively. The detection limit and lower limit of detectable contents were 1.8 × 10-7 M and 6.04 × 10-7 M, respectively. The selectivity of the sensor to Lev was evaluated with respect to some fluoroquinolone antibiotics: ciprofloxacin, lomefloxacin, enrofloxacin. The sensor was used for the determination of Lev in meat and milk by differential pulse voltammetry.
About the authors
I. A. Abramov
Ufa University of Science and Technology
Author for correspondence.
Email: papa.abramov@mail.ru
Department of analytical chemistry
Russian Federation, 450076 UfaS. I. Gainanova
Ufa University of Science and Technology
Email: papa.abramov@mail.ru
Department of analytical chemistry
Russian Federation, 450076 UfaL. R. Zagitova
Ufa University of Science and Technology
Email: papa.abramov@mail.ru
Department of analytical chemistry
Russian Federation, 450076 UfaV. N. Maistrenko
Ufa University of Science and Technology
Email: papa.abramov@mail.ru
Department of analytical chemistry
Russian Federation, 450076 UfaReferences
- Stavroulaki A., Tzatzarakis M.N., Karzi V., Katsikantami I., Renieri E., Vakonaki E., Avgenaki M., Alegakis A., Stan M., Kavvalakis M., Rizos A.K., Tsatsakis A. Antibiotics in raw meat samples: Estimation of dietary exposure and risk assessment // Toxics. 2022. V. 10. № 8. P. 456. https://doi.org/10.3390/toxics10080456
- Evtugyn G., Porfireva A., Tsekenis G., Oravczova V., Hianik T. Electrochemical aptasensors for antibiotics detection: Recent achievements and applications for monitoring food safety // Sensors. 2022. V. 22. № 10. P. 3684. https://doi.org/10.3390/s22103684
- Sitovs A., Sartini I., Giorgi M. Levofloxacin in veterinary medicine: A literature review // Res. Vet. Sci. 2021. V. 137. P. 111. https://doi.org/10.1016/j.rvsc.2021.04.031
- Xiaoying X., Lihong L., Zhimin J., Yang S. Determination of enrofloxacin and ciprofloxacin infoods of animal origin by capillary electrophoresis with field amplified samplestacking–sweeping technique // Food Chem. 2015. V. 176. P. 219. https://doi.org/10.1016/j.foodchem.2014.12.054
- Peris-Vicente J., Peris-García E., Albiol-Chiva J., Durgbanshi A., Ochoa-Aranda E., Carda-Broch S. et al. Liquid chromatography, a valuable tool in the determination of antibiotics in biological, food and environmental samples // Microchem. J. 2022. V. 177. Article 107309. https://doi.org/10.1016/j.microc.2022.107309
- Elsayed A.S., Abusham A., Al-Touby S.S.J., Al-Rajhi W.K.H., Hossain M.A. Determination of antibiotic residues in boiler chickens by liquid chromatography-mass spectrometry // Food Anal. Methods. 2023. V. 16. P. 1. https://doi.org/10.1007/s12161-023-02530-4
- Zhuliangzi L., Fenfang D., Rong H., Lei T., Xiaoyan L., Xinhong P., Zhicong Y. A pass-through solid-phase extraction clean-up method for the determination of 11 quinolone antibiotics in chicken meat and egg samples using ultra-performance liquid chromatography tandem mass spectrometry // Microchem. J. 2019. V. 151. Article 104213. https://doi.org/10.1016/j.microc.2019.104213
- Serrano M.J., Mata L., Pellicer S., Segura-Gil I., Razquin P., Pagán R. Development and validation of a rapid lateral flow test for the detection of fluoroquinolones in meat and blood // Food Control. 2024. V. 156. Article 110116. https://doi.org/10.1016/j.foodcont.2023.110116
- Gaudin V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review // Biosens. Bioelectron. 2017. V. 90. P. 363. https://doi.org/10.1016/j.bios.2016.12.005
- Майстренко В.Н., Зильберг Р.А. Энантиоселективные вольтамперометрические сенсоры на основе хиральных материалов // Журн. аналит. химии. 2020. Т. 75. С. 1080. 10.31857/S0044450220120105 (Maistrenko V.N., Zil’berg R.A. Enantioselective voltammetric sensors on the basis of chiral materials // J. Anal. Chem. 2020. V. 75. P. 1514. https://doi.org/10.1134/S1061934820120102)
- Maduraiveeran G., Sasidharan M., Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications // Biosensor. Bioelectron. 2018. V. 103. P. 113. https://doi.org/10.1016/j.bios.2017.12.031
- Zuyu H., Shuai Z., Yingju L., Yuan H., Hongtao L. A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multienzyme-labeled gold nanoflower as signal enhancer // Biosens. Bioelectron. 2015. V. 73 P. 85. https://doi.org/10.1016/j.bios.2015.05.054
- de Farias D.M., de Faria L.V., Lisboa T.P., Matos M.A., Munoz R., Matos R. Determination of levofloxacin in pharmaceutical formulations and urine at reduced graphene oxide and carbon nanotube-modified electrodes // J. Solid. State Electrochem. 2020. V. 24. P. 1165. https://doi.org/10.1007/s10008-020-04589-z
- Lei H., Yanfang Z., Chao C., Feng Li. A novel electrochemical sensor based on poly(p-aminobenzenesulfonic acid)-reduced graphene oxide composite film for the sensitive and selective detection of levofloxacin in human urine // J. Electroanal. Chem. 2018. V. 817. P. 141. https://doi.org/10.1016/j.jelechem.2018.04.008
- Huang J.Y., Bao T., Hu T.X., Wen W., Zhang X., Wang S.F. Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots // Microchim. Acta. 2017. V. 184. P. 127. https://doi.org/10.1007/s00604-016-1982-5
- Ademar W., Anderson M. S., Orlando F.-F. Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film // Sens. Actuators B: Chem. 2018. V. 255. Part 2. P. 2264. https://doi.org/10.1016/j.snb.2017.09.020
- Wei W., Dong-Ming Z., Xiu-Hua Z., Hua-Yu X., Sheng-Fu W., Wei C., Yuan-Di Z. One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levofloxacin determination in pharmaceuticals // Sens. Actuators B: Chem. 2012. V. 174. P. 202. https://doi.org/10.1016/j.snb.2012.08.010
- Liu T., Yan T., Rongfeng Z., Weilu L., Yue G., Cong L., Ruixue C., Zhiquan Z. Ag nanoparticles and electrospun CeO2-Au composite nanofibers modified glassy carbon electrode for determination of levofloxacin // Sens. Actuators B: Chem. 2014. V. 203. P. 95. https://doi.org/10.1016/j.snb.2014.06.089
- Zagitova L.R., Abramov I.A., Zagitov V.V., Gainanova S.I., Maistrenko V.N. Effect of the chiral blocks of functionalized fullerene on levofloxacin enantioselective voltammetric sensing // J. Electroanal. Chem. 2023. V. 940. Article 117508. https://doi.org/10.1016/j.jelechem.2023.117508
- Zagitova L., Yarkaeva Y., Zagitov V., Gainanova S., Maistrenko V. Voltammetric chiral recognition of naproxen enantiomers by N-tosylproline functionalized chitosan and reduced graphene oxide based sensor // J. Electroanal. Chem. 2022. V. 922. Article 116744. https://doi.org/10.1016/j.jelechem.2022.116744
- Yuan Z., Xuecheng Z., Wei J., Huilin L., Jing W., Baoguo S. Natural and artificial chiralbased systems for separation applications // Crit. Rev. Anal. Chem. 2021. V. 53. P. 27. https://doi.org/ 10.1080/10408347.2021.1932408
- Шендерович В.А., Пастернак Н.А., Столярова Л.Г., Соловьева В.Е., Власова И.В., Ведьмиа Е.А., Шевелева С.А. Экспресс-метод определения антибиотиков в пищевых продуктах. Методические указания. 29 марта 1995 г. МУК 4.2.026–95.
- Kardani F., Mirzajani R., Tamsilian Y., Kiasat A. The residual determination of 39 antibiotics in meat and dairy products using solid-phase microextraction based on deep eutectic solvents@UMCM-1 metal-organic framework /molecularly imprinted polymers with HPLC-UV // Food Chem. Adv. 2023. V. 2. Article 100173. https://doi.org/10.1016/j.focha.2022.100173
- Terrado-Campos D., Tayeb-Cherif K., Peris-Vicente J., Carda-Broch S., Esteve-Romero J. Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection // Food Chem. 2017. V. 221. P. 1277. https://doi.org/10.1016/j.foodchem.2016.11.029
- Yánez-Jácome G.S., Aguilar-Caballos M.P., Gómez-Hens A. Luminescent determination of quinolones in milk samples by liquid chromatography/post-column derivatization with terbium oxide nanoparticles // J. Chromatogr. A. 2015. V. 1405. P. 126. https://doi.org/10.1016/j.chroma.2015.05.070
- Mi T., Wang Z., Eremin S., Shen J., Zhang S. Simultaneous determination of multiple (fluoro)quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay // J. Agric. Food Chem. 2013. V. 61. P. 9347. https://doi.org/10.1021/jf403972r
- Yuphintharakun N., Nurerk P., Chullasat K., Kanatharana P., Davis F., Sooksawat D., Bunkoed O. A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin // Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2018. V. 201. P. 382. https://doi.org/10.1016/j.saa.2018.05.034
Supplementary files
