Impedance sensor based on N-acetyl-L-cysteine for evaluation of antioxidant activity against hydroxyl radicals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Hydroxyl radical is the most aggressive and dangerous product of incomplete reduction of oxygen in the body, therefore its determination and the influence of various antioxidants on the inhibition of OH-radicals is an urgent task. An impedance-metric sensor for the determination of hydroxyl radicals based on a graphite electrode modified with electrochemically deposited gold and self-organizing monolayer of N-acetyl-L-cysteine (ACC) has been proposed. The use of ACC causes high selectivity of the sensor, and the use of non-Faraday impedance as a method of analytical signal registration allows to reach the detection limit of OH-radicals of 0.01 nM with a linear range of detectable concentrations of 0.08-8 nM. The developed sensor has been successfully applied to evaluate the activity of some antioxidants (ascorbic acid, glutathione, coenzyme Q10) in relation to OH-radicals.

Sobre autores

A. Erkovich

National Research Tomsk Polytechnic University

Autor responsável pela correspondência
Email: avg48@tpu.ru
Rússia, 634050 Tomsk

E. Korotkova

National Research Tomsk Polytechnic University

Email: avg48@tpu.ru
Rússia, 634050 Tomsk

E. Dorozhko

National Research Tomsk Polytechnic University

Email: avg48@tpu.ru
Rússia, 634050 Tomsk

A. Solomonenko

National Research Tomsk Polytechnic University

Email: avg48@tpu.ru
Rússia, 634050 Tomsk

N. Aseeva

National Research Tomsk Polytechnic University

Email: avg48@tpu.ru
Rússia, 634050 Tomsk

Bibliografia

  1. Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. Oxford: Oxford University Press, 2015. 906 p.
  2. Roots R., Okada S. Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells // Radiat. Res. 1975. V. 64. № 2. P. 306. https://doi.org/10.2307/3574267
  3. Evans M.D., Dizdaroglu M., Cooke M.S. Oxidative DNA damage and disease: Induction, repair and significance // Mutat. Res./Rev. Mutat. 2004. V. 567. № 1. P. 20. https://doi.org/10.1016/j.mrrev.2003.11.001
  4. Halliwell B., Chirico S. Lipid peroxidation: Its mechanism, measurement, and significance // Am. J. Clin. Nutr. 1993. V. 57. № 5. P. 715S. https://doi.org/10.1093/ajcn/57.5.715S
  5. Stadtman E.R., Levine R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins // Amino Acids. 2003. V. 25. P. 207. https://doi.org/10.1007/s00726-003-0011-2
  6. Lancelot E., Revaud M.L., Boulu R.G., Plotkine M., Callebert J. Alpha-phenyl-N-tert-butylnitrone attenuates excitotoxicity in rat striatum by preventing hydroxyl radical accumulation // Free Radical Bio. Med. 1997. V. 23. № 7. P. 1031. https://doi.org/10.1016/S0891-5849(97)00128-7
  7. Cuzzocrea S., Reiter R.J. Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury // Eur. J. Pharmacol. 2001. V. 426. № 1–2. P. 2. https://doi.org/10.1016/S0014-2999(01)01175-X
  8. Sosa V., Moliné T., Somoza R., Paciucci R., Kondoh H., LLeonart M.E. Oxidative stress and cancer: An overview // Ageing Res. Rev. 2013. V. 12. № 1. P. 378. https://doi.org/10.1016/j.arr.2012.10.004
  9. Guo Q., Rimbach G., Moini H., Weber S., Packer L. ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids // Toxicology. 2002. V. 179. № 1–2. P. 171. https://doi.org/10.1016/S0300-483X(02)00241-X
  10. Cheng F.C., Jen J.F., Tsai T.H. Hydroxyl radical in living systems and its separation methods // J. Chromatogr. B. 2002. V. 781. № 1–2. P. 481. https://doi.org/10.1016/S1570-0232(02)00620-7
  11. Hou J.T., Zhang M., Liu Y., Ma X., Duan R., Cao X., et al. Fluorescent detectors for hydroxyl radical and their applications in bioimaging: A review // Coordin. Chem. Rev. 2020. V. 421. Article 213457. https://doi.org/10.1016/j.ccr.2020.213457
  12. Щербатых А.А., Черновьянц М.С. Исследование антитиреоидных и антиоксидантных свойств цистеина, глутатиона и метионина методами спектрофотометрии и высокоэффективной жидкостной хроматографии // Журн. аналит. химии. 2021. Т. 76. № 4. С. 313. (Shcherbatykh A.A., Chernov’yants M.S. Study of antithyroid and antioxidant properties of cysteine, glutathione, and methionine by spectrophotometry and high performance liquid chromatography // J. Anal. Chem. 2021. V. 76. P. 476.)
  13. Алексенко C.С., Казимирова К.О., Штыков С.Н. Сравнительная оценка содержания свободных фенольных соединений и антиоксидантной активности различных образцов гречихи // Журн. аналит. химии. 2022. Т. 77. № 8. С. 704. (Aleksenko S.S., Kazimirova K.O., Shtykov S.N. Comparative evaluation of the concentration of free phenolic compounds and the antioxidant activity of various buckwheat samples // J. Anal. Chem. 2022. V. 77. № 8. P. 948.)
  14. Geraskevich A.V., Solomonenko A.N., Dorozhko E.V., Korotkova E.I., Barek J. Electrochemical sensors for the detection of reactive oxygen species in biological systems: A critical review // Crit. Rev. Anal. Chem. 2022. P. 3. https://doi.org/10.1080/10408347.2022.2098669
  15. Ding S., Li M., Gong H., Zhu Q., Shi G., Zhu A. Sensitive and selective measurement of hydroxyl radicals at subcellular level with tungsten nanoelectrodes // Anal. Chem. 2020. V. 92. № 3. P. 2543. https://doi.org/10.1021/acs.analchem.9b04139
  16. Hilgemann M., Scholz F., Kahlert H., De Carvalho L.M., Da Rosa M.B., Lindequist U., et al. Electrochemical assay to quantify the hydroxyl radical scavenging activity of medicinal plant extracts // Electroanalysis. 2010. V. 22. № 4. P. 406. https://doi.org/10.1002/elan.200900385
  17. Aruoma O.I., Halliwell B., B.M. Hoey, Butler J. The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid // Free Radical Bio. Med. 1989. V. 6. № 6. P. 593. https://doi.org/10.1016/0891-5849(89)90066-X
  18. Schulte P., Bayer A., Kuhn F., Luy T., Volkmer M. H2O2/O3, H2O2/UV and H2O2/Fe2+ processes for the oxidation of hazardous wastes // Ozone: Sci. Eng. 1995. V. 17 P. 119. https://doi.org/10.1080/01919519508547541
  19. Hsu C.H., Mansfeld F. Concerning the conversion of the constant phase element parameter Y0 into a capacitance // Corrosion. 2001. V. 57. № 09. P. 747. https://doi.org/10.5006/1.3280607
  20. Комптон Р.Г., Бэнкс К.Е. Постигая вольтамперометрию. Томск: Изд-во ТПУ, 2015. 509 с.
  21. Wang Y., Limon-Petersen J.G., Compton R.G. Measurement of the diffusion coefficients of [Ru(NH3)6]3+ and [Ru(NH3)6]2+ in aqueous solution using microelectrode double potential step chronoamperometry // J. Electroanal. Chem. 2011. V. 652. № 1–2. P. 13. https://doi.org/10.1016/j.jelechem.2010.12.011
  22. Thal D., Kahlert H., Chinnaya J., Ahrens P., Hasse U. Impact of gold-1-decanethiol-SAM formation and removal cycles on the surface properties of polycrystalline gold and SAM quality // J. Solid State Electr. 2018. V. 22. № 4. P. 1149. https://doi.org/10.1007/s10008-017-3858-y
  23. Naidu K.A. Vitamin C in human health and disease is still a mystery? An overview // Nutr. J. 2003. V. 2. P. 1.
  24. Abedinzadeh Z., Gardés-Albert M., Ferradini C. Reactions of OH· and Br2 radicals with glutathione. A radiolysis study // Int. J. Radiat. App. Instrum. Part C. Radiat. Phys. Chem. 1992. V. 40. № 6. P. 551. https://doi.org/10.1016/1359-0197(92)90223-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024