Evolution of contactless conductometry methods
- Authors: Yuskina E.A.1, Panchuk V.V.1,2, Kirsanov D.O.1
-
Affiliations:
- St. Petersburg State University
- Institute for Analytical Instrumentation of the Russian Academy of Sciences
- Issue: Vol 79, No 6 (2024)
- Pages: 544-554
- Section: REVIEWS
- Submitted: 31.01.2025
- URL: https://snv63.ru/0044-4502/article/view/650202
- DOI: https://doi.org/10.31857/S0044450224060017
- EDN: https://elibrary.ru/tvyoys
- ID: 650202
Cite item
Abstract
The development of chemical sensor devices operating in non-contact mode is of primary interest due to the demand from various industries for a fast, simple and inexpensive determination of chemical composition in different media in a non-invasive way. One of the promising directions for the development of analytical devices with such characteristics is the use of high-frequency electrical signals. The paper discusses the evolution of high-frequency contactless conductometry method, likewise other methods and devices operating on similar physical principles (dielectric spectroscopy, microwave sensors, C4D detectors).
About the authors
E. A. Yuskina
St. Petersburg State University
Email: d.kirsanov@gmail.com
Institute of Chemistry
Russian Federation, 198504 St. Petersburg, PeterhofV. V. Panchuk
St. Petersburg State University; Institute for Analytical Instrumentation of the Russian Academy of Sciences
Email: d.kirsanov@gmail.com
St. Petersburg State University, Institute of Chemistry
Russian Federation, 198504 St. Petersburg, Peterhof; 198095 St. PetersburgD. O. Kirsanov
St. Petersburg State University
Author for correspondence.
Email: d.kirsanov@gmail.com
Institute of Chemistry
Russian Federation, 198504 St. Petersburg, PeterhofReferences
- Relis M. An Electrodeless Method for Measuring the Low-Frequency Conductivity of Electrolytes. M.S. Thesis. Cambridge: Mass. Institute of Technology, 1947.
- Brown N.L., Hamon B.V. An inductive salinometer // Deep Sea Res. 1961. V. 8. P. 65. https://doi.org/10.1016/0146-6313(61)90015-6
- Light T.S. Electrodeless conductivity / Electrochemistry, Past and Present. United States: ACS Symposium Series, 1989. V. 390. P. 429. https://doi.org/10.1021/bk-1989-0390.ch029
- Park K., Partial equivalent conductance of electrolytes in sea water // Deep Sea Res. 1964. V. 11. P. 729. https://doi.org/10.1016/0011-7471(64)90946-5
- Calvert R., Cornelius J.A., Griffiths V.S., Stock D.I. The determination of the electrical conductivities of some concentrated electrolyte solutions using a transformer bridge // J. Phys. Chem. 1958. V. 62. P. 47. https://doi.org/10.1021/j150559a013
- Lavagnino B., Alby B. Differential transformer for resistance measurements // Ann. Chim. 1959. V. 49. P. 1272.
- Gupta S.R., Hills, G.J. J. A precision electrode-less conductance cell // Sci. Instrum. 1956. V. 33. P. 313.
- Johnson C.M., Hart G.E. Improved electrodeless toroidal conductivity analyzer // Anal. Instrum. 1967. V. 4. P. 23.
- Pungor E. Conductometry and oscillometry // J. Electroanal. Chem. 1962. V. 3. P. 289. https://doi.org/10.1016/0022-0728(62)85022-0
- Hall J. L. High-frequency titration theoretical and practical aspects // Anal. Chem. 1952. V. 28. № 8. P. 1240. https://doi.org/10.1021/ac60068a002
- Hitchcock E.T., Elving P.J. Lewis acid-base titrations employing megacycle-frequency oscillators: Titration involving stannic chloride in acetonitrile and benzene solution // Anal. Chim. Acta. 1963. V. 28. P. 301. https://doi.org/10.1016/S0003-2670(00)87237-2
- Ateeq M., Wylie S., Al-Shammaa A., Al-Nageim H. Microwave spectroscopy: A potential technique to analyse bitumen dielectric and physical properties // Meas. Sci. Technol. 2012. V. 23. Article 085503. https://doi.org/10.1088/0957-0233/23/8/085503
- Yaroshenko I., Kirsanov D., Marjanovic M., Lieberzeit P.A., Korostynska O., Mason A., et al. Real-time water quality monitoring with chemical sensors // Sensors. 2020. V. 20. P. 1. https://doi.org/10.3390/s20123432
- Tang P., Zhao L., Ren L., Zhao Z., Yao Y. Real time monitoring of surface water pollution using microwave system // J. Electromagn. Waves Appl. 2008. V. 22. P. 767. https://doi.org/10.1163/156939308784159570
- Liang Y., Ma M., Zhang F., Liu F., Lu T., Liu Z., Li Y. Wireless microfluidic sensor for metal ion detection in water // ACS Omega. 2021. V. 6. P. 9302. https://doi.org/10.1021/acsomega.1c00941
- Harnsoongnoen S., Wanthong A. A non-contact planar microwave sensor for detection of high-salinity water containing NaCl, KCl, CaCl2, MgCl2 and Na2CO3 // Sens. Actuators B. 2021. V. 331. Article 129355. https://doi.org/10.1016/j.snb.2020.129355
- Harnsoongnoen S., Wanthong A., Charoen-In U., Siritaratiwat A. Planar microwave sensor for detection and discrimination of aqueous organic and inorganic solutions // Sens. Actuators B. 2018. V. 271. P. 300. https://doi.org/10.1016/j.snb.2018.05.077
- Harnsoongnoen S., Buranrat B. Advances in a microwave sensor-type interdigital capacitor with a hexagonal complementary split-ring resonator for glucose level measurement // Chemosensors. 2023. V. 11. P. 257. https://doi.org/10.3390/chemosensors11040257
- Baghelani M., Hosseini N., Daneshmand M. Non-contact real-time water and brine concentration monitoring in crude oil based on multi-variable analysis of microwave resonators // Measurement. 2021. V. 177. Article 109286. https://doi.org/10.1016/j.measurement.2021.109286
- Carr A.R., Chan Y.J., Reuel N.F. Contact-Free, Passive, electromagnetic resonant sensors for enclosed biomedical applications: A perspective on opportunities and challenges // ACS Sens. 2023. V. 8. P. 943. https://doi.org/10.1021/acssensors.2c02552
- Markx G.H., Davey C.L. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology // Enzyme Microb. Technol. 1999. V. 25. P. 161. https://doi.org/10.1016/S0141-0229(99)00008-3
- Russel M., Sophocleous M., JiaJia S., Xu W., Xiao L., Maskow T., et al. High-frequency, dielectric spectroscopy for the detection of electrophysiological/biophysical differences in different bacteria types and concentrations // Anal. Chim. Acta. 2018. V. 1028. P. 86. https://doi.org/10.1016/j.aca.2018.04.045
- Castro-Giráldez M., Botella P., Toldrá F., Fito P. Low-frequency dielectric spectrum to determine pork meat quality // Innov. Food Sci. Emerg. Technol. 2010. V. 11. P. 376. https://doi.org/10.1016/j.ifset.2010.01.011
- Harindran A., Madhurima V. On the efficacy of dielectric spectroscopy in the identification of onset of the various stages in lactic acid coagulation of milk // J. Microw. Power Electromagn. Energy. 2020. V. 54. P. 161. https://doi.org/10.1080/08327823.2020.1755484
- Nogueira T., do Lago C.L. Determination of Ca, K, Mg, Na, sulfate, phosphate, formate, acetate, propionate, and glycerol in biodiesel by capillary electrophoresis with capacitively coupled contactless conductivity detection // Microchem. J. 2011. V. 99. P. 267. https://doi.org/10.1016/j.microc.2011.05.014
- Nguyen T.A.H., Nguyen V.R., Le D.D., Nguyen T.T.B., Cao V.H., Nguyen T.K.D., et al. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection // J. Chromatogr. A. 2016. V. 1457. P. 151. https://doi.org/10.1016/j.chroma.2016.06.050
- Drevinskas T., Mora M.F., Ferreira Santos M.S., Noell A.C., Willis P.A. Submersible capillary electrophoresis analyzer: A proof-of-concept demonstration of an in situ instrument for future missions to ocean worlds // Anal. Chem. 2023. V. 95. № 27. P. 10249. https://doi.org/10.1021/acs.analchem.3c00572
- Travassos Lemos M.A., Cassella R.J., de Jesus D.P. A simple analytical method for determining inorganic anions and formate in virgin olive oils by capillary electrophoresis with capacitively coupled contactless conductivity detection // Food Control. 2015. V. 57. P. 327. https://doi.org/10.1016/j.foodcont.2015.04.026
- Fukana N., Sonsa-ard T., Chantipmanee N., Hauser P.C., Wilairat P., Nacapricha D. Contactless conductivity sensor as detector for microfluidic paper-based analytical device with application to unique rapid method for quantifying sulfite preservative // Sens. Actuators B. 2021. V. 339. Article 129838. https://doi.org/10.1016/j.snb.2021.129838
- Sonsa-ard T., Chantipmanee N., Fukana N., Hauser P.C., Wilairat P., Nacapricha D. Contactless conductivity sensor employing moist paper as absorbent for in-situ detection of generated carbon dioxide gas // Anal. Chim. 2020. V. 1118. P. 44. https://doi.org/10.1016/j.aca.2020.04.044
- Zhang X., Jiang X., Yang Q., Wang X., Zhang Y., Zhao J., et al. Online monitoring of bacterial growth with an electrical sensor // Anal. Chem. 2018. V. 90. P. 6006. https://doi.org/10.1021/acs.analchem.8b01214
- Piccard A., Frivold A. Demonstration de courants d’induction produits sans electrodes dans electrolyte // Archives des Sciences Physiques et Naturelles. 1920. V. 5. № 2.
- Forman J., Crisp D. The radio-frequency absorption spectra of solutions of electrolytes // Trans. Faraday Soc. 1946. V. 42. P. 186. https://doi.org/10.1039/TF946420A186
- West P.W., Senisei P., Burkhalter T.S. Determination of water in alcohols by means of high-frequency oscillators // Anal. Chem. 1952. V. 28. № 8. P. 1250. https://doi.org/10.1021/AC60068A006
- Reilley C.N., Mccurdy W.H. JR. Principles of high frequency titrimetry // Anal. Chem. 1953. V. 25. № 1. P. 86. https://doi.org/10.1021/ac60073a014
- Mason A., Wylie S., Korostynska O., Cordova-lopez L. E., Al-Shamma’a A. I. Flexible e-textile sensors for realtime health monitoring at microwave frequencies // Int. J. Smart Sens. Intell. Syst. 2014. V. 7. № 1. P. 31. https://doi.org/10.21307/ijssis-2017-644
- Goh J.H., Mason A., Al-Shamma’a A.I., Field M., Browning P. Lactate detection using microwave spectroscopy for in situ medical applications // Int. J. Smart Sens. Intell. Syst. 2011. V. 4. № 3. P. 338. https://doi.org/10.21307/ijssis-2017-443
- Korostynska O., Mason A., Al-Shammaa A.I. Flexible microwave sensors for real-time analysis of water contaminants // J. Electromagn. Waves Appl. 2013. V. 27. № 16. P. 2075. https://doi.org/10.1080/09205071.2013.832393
- Ateeq M., Shaw A., Garrett R., Dickson P. A proof of concept study on utilising a non-invasive microwave analysis technique to characterise silver based materials in aqueous solution // Sens. Imaging. 2017. V. 18. P. 1. https://doi.org/10.1007/s11220-017-0162-y
- Harnsoongnoen S., Wanthong A., Charoen-In U., Siritaratiwat A. Microwave sensor for nitrate and phosphate concentration sensing // IEEE Sens. J. 2019. V. 19. P. 2950. https://doi.org/10.1109/JSEN.2018.2890462
- Zhao K., Liu Y., Zhang Q. Dielectric behavior of adulterated milk with urea and water // J. Mol. Liq. 2019. V. 273. P. 37. https://doi.org/10.1016/j.molliq.2018.09.133
- Harris C.M., Kell D.B. The estimation of microbial biomass // Biosensors. 1985. V. 1. P. 17. https://doi.org/10.1016/0265-928X(85)85005-7
- Grant E.H., Sheppard R.J., South G.P. Dielectric Behaviour of Biological Molecules in Solution. London: Oxford University Press, 1978. P. 237.
- Pethig R. Dielectric properties of biological materials: Biophysical and medical applications // IEEE Trans. Electr. Insul. 1984. V. 19. № 5. P. 453. https://doi.org/10.1109/TEI.1984.298769
- Fernandez R.E., Rohani A., Farmehini V., Swami N.S. Review: Microbial analysis in dielectrophoretic microfluidic systems // Anal. Chim. Acta. 2017. V. 966. P. 11. https://doi.org/10.1016/j.aca.2017.02.024
- Harris C.M., Todd R.W., Bungard S.J., Lovitt R.W., Morris J.G., Kell D.B. Dielectric permittivity of microbial suspensions at radio frequencies: A novel method for the real-time estimation of microbial biomass // Enzyme Microb. Technol. 1987. V. 9. P. 181. https://doi.org/10.1016/0141-0229(87)90075-5
- Zemann A.J., Schnell E., Volgger D., Bonn G.K. Contactless conductivity detection for capillary electrophoresis // Anal. Chem. 1998. V. 70. P. 563. https://doi.org/10.1021/ac9707592
- Fracassi da Silva J.A., do Lago C.L. An oscillometric detector for capillary electrophoresis // Anal. Chem. 1998. V. 70. P. 4339. https://doi.org/10.1021/ac980185g
- Feng Z., Li F., Huang Y., Gao J., Hu J., Xu Y. Simultaneous quantitative analysis of six cations in three biodiesel and their feedstock oils by an ion-exchange chromatography system without chemical suppression // Energy Fuels. 2017. V. 31. P. 3921. https://doi.org/10.1021/acs.energyfuels.6b01574
- Hoang B.A., Tran Thanh H., Nguyen Thi Ngoc, Pham Ngoc T., K. Do Trung, Le N.T, et al. A wireless passive capacitively coupled contactless conductivity detection (WPC4D) for microfluidic flow monitoring // IEEE Sensors. 2021. P. 2. https://doi.org/10.1109/SENSORS47087.2021.9639815
- Kent M., Knöchel R., Daschner F., Berger U.-K. Composition of foods including added water using microwave dielectric spectra // Food Control. V. 12. P. 467. https://doi.org/10.1016/S0956-7135(01)00021-4
- Naderi-Boldaji M., Mishra P., Ahmadpour-Samani M., Ghasemi-Varnamkhasti, M., Ghanbarian D., Izadi Z. Potential of two dielectric spectroscopy techniques and chemometric analyses for detection of adulteration in grape syrup // Measurement. 2018. V. 127. P. 518. https://doi.org/10.1016/j.measurement.2018.06.015
- Regier M., Yu X., Ghio S., Danner T., Schubert H. Dielectric spectroscopy and principal component analysis as a method for oil fraction determination in oil-in water-emulsions with varying salt content / Advances in Microwave and Radio Frequency Processing / Ed. Willert-Porada M. Springer, 2006. P. 129. https://doi.org/10.1007/978-3-540-32944-2_15
- Yuskina E., Makarov N., Khaydukova M., Filatenkova T., Shamova O., Semenov V., Panchuk V., Kirsanov D. A simple contactless high-frequency electromagnetic sensor: Proof of concept // Anal. Chem. 2022. V. 94. № 35. P. 11978. https://doi.org/10.1021/acs.analchem.2c02067
Supplementary files
