Comparison of methods for rapid assessment of selectivity and efficiency of the analytical signal of fluorescent phases of different natures
- Authors: Kuchmenko T.А.1,2, Vandychev D.Y.3, Yagov V.V.2, Umarhanov R.U.1, Ledeneva I.V.3
-
Affiliations:
- Voronezh State University of Engineering Technologies
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Voronezh State University
- Issue: Vol 79, No 7 (2024)
- Pages: 782-799
- Section: Articles
- Submitted: 31.01.2025
- URL: https://snv63.ru/0044-4502/article/view/650200
- DOI: https://doi.org/10.31857/S0044450224070107
- EDN: https://elibrary.ru/TNHNCU
- ID: 650200
Cite item
Abstract
The paper presents the results of assessing the sorption and fluorescence properties of compounds from the azolotriazine class and phases based on cadmium sulfide quantum dots in the presence of volatile organic compounds (biomarkers of the state of living systems). The sorption properties of phases based on organic dyes and encapsulated semiconductors in relation to vapors of alcohols, ketones, amines, acids, ammonia, and aldehydes were studied using direct high-sensitivity quartz crystal microgravimetry. Spectral properties and their changes in the presence of analyte vapors were studied using various spectroscopic methods (absorption, photoluminescence). The results of these studies and the possibility of optimizing this stage were compared. It is proposed to evaluate the consistency of methods for predicting changes in fluorescence properties in test systems for volatile organic compounds using Kendall’s W concordance coefficient. It was found that the highest concordance coefficient (W = 0.89) was obtained with the methods of spectrofluorimetry and direct vapor microgravimetry when sorption occurs on phases—potential fillers for test systems. The correlation of results obtained by different fluorescence methods (visual plate test systems and fluorimetry of phases on paper substrates) is 0.80, which confirms a high degree of consistency in assessing the interaction between analytes and organic, combined fluorochromes. It was established that methods similar in the nature of their analytical response are not better aligned with each other than with the method of direct vapor microgravimetry on microphases of fluorimetric reagents of different natures (CdS/chitosan quantum dots, organic compounds of the azolotriazine class, mixed phases). This, in turn, allows for the selection of simpler, more accessible, and rapid methods and tools for analysis during routine experiments.
Full Text

About the authors
T. А. Kuchmenko
Voronezh State University of Engineering Technologies; Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: tak1907@mail.ru
Russian Federation, 394036, Voronezh; 119334, Moscow
D. Yu. Vandychev
Voronezh State University
Email: tak1907@mail.ru
Russian Federation, 394006, Voronezh, Universitetskaya Square, 1
V. V. Yagov
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: tak1907@mail.ru
Russian Federation, 119334, Moscow
R. U. Umarhanov
Voronezh State University of Engineering Technologies
Email: tak1907@mail.ru
Russian Federation, 394036, Voronezh
I. V. Ledeneva
Voronezh State University
Email: tak1907@mail.ru
Russian Federation, 394006, Voronezh, Universitetskaya Square, 1
References
- Drummen G.P. Fluorescent probes and fluorescence (microscopy) techniques — Illuminating biological and biomedical research // Molecules. 2012. 17. № 12. P. 14067. https://doi.org/10.3390/molecules171214067
- Willmann J.K., Bruggen N.V., Dinkelborg L.M., Gambhir S.S. Molecular imaging in drug development // Nat. Rev. Drug. Discov. 2008. V. 7. P. 591.
- Atreya R., Goetz M. Molecular imaging in gastroenterology // Nat. Rev. Gastroenterol. Hepayol. 2013. V. 10. P. 704.
- Carter K.P., Young A.M., Palmer A.E. Fluorescent sensors for measuring metal ions in living systems // Chem. Rev. 2014. V. 114. P. 4564.
- Guo Z., Park S., Yoon J., Shin I. Recent progress in the development of nearinfared fluorescent probes for bioimaging applications // Chem. Soc. Rev. 2014. V. 43. P. 16.
- Мартынов В.И., Пахомов А.А., Попова Н.В., Деев И.Е., Петренко А.Г. Синтетические флуорофоры для визуализации биомолекул в живых системах // ACTA NATURAE. 2016. Т. 8. № 4. С. 37.
- Злотина М.М., Емельянов В.В., Чиркова Т.В. Флуоресцентные сенсоры, используемые для изучения роли вторичных посредников в клеточной сигнализации // Вестник СПбГУ. 2011 Сер. 3. № 2. С. 100.
- Yan Y., Zhu S., Chen Z., Ji Y. Флуоресцентный сенсор H2S и его применение для биовизуализации // Журн. прикл. спектроскопии. 2022. T. 89. № 1. С. 139.
- Liu Y., Feng X., Yu Y., Zhao Q., Tang C., Zhang J. A review of bioselenol-specific fluorescent probes: Synthesis, properties, and imaging applications // Anal. Chem. Acta. 2020 V. 1110. P. 141. https://doi.org/10.1016/j.aca.2020.03.027
- Wang F., Yang X., Zhan Q., Nandi C.K., Editorial: Recent advances in fluorescent probes for super-resolution // Front. Chem. 2021. V. 9. https://doi.org/10.3389/fchem.2021.698531
- Yang Y., Gao F., Wang Y., Li H., Zhang J., Sun Z., Jiang Y. Fluorescent organic small molecule probes for bioimaging and detection applications // Molecules. 2022. V. 27. P. 8421. https://doi.org/10.3390/ molecules27238421
- Xie C., Luo K., Tan L., Yang Q., Zhao X., Zhou L. A review for in vitro and in vivo detection and imaging of gaseous signal molecule carbon monoxide by fluorescent probes // Molecules. 2022. V. 27. P. 8842. https://doi.org/10.3390/ molecules27248842.
- Wang L., Ran X., Tang H., Cao D. Recent advances on reaction-based amine fluorescent probes // Dyes Pigm. 2021. V. 194. Article 109634. https://doi.org/10.1016/j.dyepig.2021.109634
- Dou W.T., Han H.H., Sedgwick A.C., Zhu G.B., Zang Y., Yang X.R., Yoon J., James T.D., Li J., He X. Fluorescent probes for the detection of disease-associated biomarkers // Sci. Bull. 2022. V. 67. P. 853. https://doi.org/10.1016/j.scib.2022.01.014
- Georgiev N.I., Bakov V.V., Anichina K.K., Bojinov V.B. Fluorescent probes as a tool in diagnostic and drug delivery systems // Pharmaceuticals. 2023. V. 16. P. 381. https://doi.org/10.3390/ph16030381
- Zhou J., Jangili P., Son S., Ji M.S., Won M., Kim J.S. Fluorescent diagnostic probes in neurodegenerative diseases // Adv. Mater. 2020 V. 32. № 51. Article 2001945. https://doi.org/10.1002/adma.202001945
- Zhou W., Guo H., Lin J., Yang F. Multiple BODIPY derivatives with 1,3,5-triazine as core: balance between fluorescence and numbers of BODIPY units // J. Iran. Chem. Soc. 2018. V. 15. P. 2559.
- Padalkar V.S., Patil V.S., Sekar N. Synthesis and photo-physical properties of fluorescent 1,3,5-triazine styryl derivatives // Chem. Cent. J. 2011. V. 5. P. 77.
- Irannejad H., Amini M., Khodagholi F., Ansari N., Tusi S.K., Sharifzadeh M., Shafiee A. Synthesis and in vitro evaluation of novel 1,2,4-triazine derivatives as neuroprotective agents // Bioorg. Med. Chem. 2010. V. 15. P. 4224.
- Ivashchenko A.V., Lazareva V.T., Prudnikova E.K., Ivashchenko S.P., Rumyantsev V.G. Synthesis of 1,2-diaminoimidazole derivatives by the reaction of benzaldehyde guanylhydrazone with α-haloalkyl aryl ketones // Chem. Heterocycl. Compd. 1982. V. 18. P. 185.
- Sun X., Liu T., Sun J., Wang X. Synthesis and application of coumarin fluorescence probes // RSC Adv. 2020. V. 10. № 18. P. 10826. https://doi.org/10.1039/c9ra10290f
- Iftikhar R., Parveen I., Mazhar A., Iqbal M.S., Kamal G.M., Hafeez F., Pang A.L, Ahmadipour M. Small organic molecules as fluorescent sensors for the detection of highly toxic heavy metal cations in portable water // J. Environ. Chem. Eng. 2023. V. 11. № 1. Article 109030. https://doi.org/10.1016/j.jece.2022.109030
- Yinyin B. Editorial: Organic fluorescent materials as chemical sensors // Chemosensors. 2021 V. 9. P. 308. doi. 10.3390/chemosensors9110308
- Jeong H., Shin H., Lee J., Kim B., Park Y.I., Yook K. S., Park J. Recent progress in the use of fluorescent and phosphorescent organic compounds for organic light-emitting diode lighting // J. Photonics Energy. 2015. V. 5. № 1. https://doi.org/10.1117/1.jpe.5.057608
- https://hmdb.ca/metabolites/ (дата обращения 22.05.2023 г.)
- https://math.semestr.ru/corel/concordance.php. (дата обращения 28.05.2023 г.)
- Новикова Л.Б., Кучменко Т.А. Аналитические возможности систем искусственного обоняния и вкуса. Часть 1. “Электронные носы” // Вестник ВГУИТ. 2019. Т. 81. № 3. С. 236. https://doi.org/10.20914/2310-1202-2019-3-236-241
- Вандышев Д.Ю., Мангушева Д.А., Потапов А.Ю., Шихалиев Х.С., Кучменко Т.А., Скориков В.Н., Умарханов Р.У., Михалев В.И. Применения флуоресцентных зондов на основе имидазотриазинопиримидинов для разработки экспрессных тестов эндометрита коров / Пути и формы совершенствования фармацевтического образования. Актуальные вопросы разработки и исследования новых лекарственных средств: сборник трудов 8-й Международной научно-методической конференции “Фармобразование-2022”. Воронеж. 2022. С. 74.
- Ayad Mohamad M., Abdelghafar Mona E., Torad Nagy L., Yamauchi Yusuke, Amer Wael A. Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor // Chemosphere. 2023. V. 312. № 1. Article 137031. https://doi.org/10.1016/j.chemosphere.2022.137031
- Dinga Liyun, Ruanb Yinlan, Lia Tao, Huanga Jun, Warren-Smithb Stephen C., Ebendorff-Heidepriemb Heike, Monro Tanya M. Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots // Sens. Actuators B: Chem. 2018. V. 273. № 10. P. 9.
Supplementary files
