Application of effervescent tablets based on magnetic charcoal for the preconcentration and determination of dichlorophenoxycarboxylic acids and their metabolites by gas chromatography–mass spectrometry in soils and natural waters

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for obtaining effervescent tablets, consisting of magnetic carbon, tartaric acid, sodium carbonate and sodium bicarbonate, and their use for the adsorption of dichlorophenoxycarboxylic acids (DCPA)—2,4-dichlorophenoxyacetic, 2,4-dichlorophenoxypropionic and 2,4-dichlorophenoxybutyric acids and their metabolites—2,4-dichlorophenol and 4-chlorophenol is proposed. The tablets are immersed in an analyzed solution with a neutral reaction medium. To analyze soils, extraction with an alkali solution followed by the neutralization of the extract is carried out. After CO2 separation is completed, the sorbent is removed with a neodymium magnet and the analytes are desorbed with acetone. The acetone extract is evaporated under a stream of nitrogen, and the concentrate is analyzed by gas chromatography–mass spectrometry. The method was tested on model systems—samples of river water and typical chernozem, which were artificially contaminated with DCPA and chlorophenols (CP). In analyzing river waters, the limits of determination for DCPA are 0.7–0.9 μg/L, for CP—40 ng/L. In soils, the limit of detection is 3–4 and 0.1 μg/kg for DCPA and CP, respectively.

Texto integral

Acesso é fechado

Sobre autores

K. Sypko

Voronezh State University of Engineering Technologies; North Caucasus Federal University

Email: goubinne@mail.ru
Rússia, 394036, Voronezh; 355017, Stavropol

A. Gubin

Voronezh State University of Engineering Technologies

Autor responsável pela correspondência
Email: goubinne@mail.ru
Rússia, 394036, Voronezh

P. Sukhanov

Voronezh State University of Engineering Technologies

Email: goubinne@mail.ru
Rússia, 394036, Voronezh

A. Kushnir

Voronezh State University of Engineering Technologies

Email: goubinne@mail.ru
Rússia, 394036, Voronezh

Bibliografia

  1. Weiss F.T., Ruepert C., Echeverría-Sáenz S., Eggen R.I.L., Stamm C. Agricultural pesticides pose a continuous ecotoxicological risk to aquatic organisms in a tropical horticulture catchment // Environ. Advances. 2023. V. 11. Article 100339. https://doi.org/10.1016/j.envadv.2022.100339
  2. Li J., Lv Q., Bi L., Fang F., Hou J., Di G. et al. Metal-organic frameworks as superior adsorbents for pesticide removal from water: The cutting-edge in characterization, tailoring, and application potentials // Coord. Chem. Rev. 2023. V. 493. Article 215303. https://doi.org/10.1016/j.ccr.2023.215303
  3. Femina C.C., Kamalesh T., Senthil Kumar P., Rangasamy G. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process // Environ. Pollut. 2023. V. 333. Article 122114. https://doi.org/10.1016/j.envpol.2023.122114
  4. Aragay G., Pino F., Merkoçi A. Nanomaterials for sensing and destroying pesticides. Chem. Rev. 2012. V. 112. № 10. P. 5317. https://doi.org/10.1021/cr300020c
  5. Приказ Минсельхоза России от 13.02.2016 года № 552. Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения. https://rulaws.ru/acts/Prikaz-Minselhoza-Rossii-ot-13.12.2016-N-552/ (05.05.2023)
  6. Постановление Главного государственного санитарного врача РФ от 28.01.2021 № 2. Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 “Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания”. http://pravo.gov.ru/proxy/ips/?docbody=&prevDoc=603138049&backlink=1&&nd=602092088 (05.05.2023)
  7. Liu L., Chen Y., Li S., Yu W., Zhang X., Wang H. et al. Enhanced electrocatalytic cathodic degradation of 2,4-dichlorophenoxyacetic acid based on a synergistic effect obtained from Co single atoms and Cu nanoclusters // Appl. Catal. B. 2023. V. 332. Article 122748. https://doi.org/10.1016/j.apcatb.2023.122748
  8. Pan X., Xu X., Song S., Xu L., Kuang H., Wu X. et al. An ic-ELISA and immunochromatographic strip assay for the detection of 2,4-dichlorophenoxyacetic acid in bean sprouts and cabbage // J. Pharm. Biomed. Anal. 2022. V. 209. Article 114524. https://doi.org/10.1016/j.jpba.2021.114524
  9. Song Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide // J. Integr. Plant. Biol. 2014. V. 56. № 2. P. 106. https://doi.org/10.1111/jipb.12131
  10. Islam F., Wang J., Farooq M.A., Khan M.S.S., Xu L., Zhu J. et al. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems // Environ. Int. 2018. V. 111. P. 332. https://doi.org/10.1016/j.envint.2017.10.020
  11. Губин А.С., Суханов П.Т., Кушнир А.А. Применение магнитных молекулярно импринтированных полимеров для онлайн динамического концентрирования 2,4-дихлорфеноксиуксусной кислоты и ее последующего определения в почве // Химическая безопасность. 2023. Т. 7. № 1. С. 128. https://doi.org/10.25514/CHS.2023.1.24010.
  12. Кормош Ж.А., Журба Е.С., Антал И.П., Кормош А.Ж., Базель Я.Р. Спектрофотометрическое определение 2,4-дихлорфеноксиуксусной кислоты с применением экстракции астрафлоксином // Журн. аналит. химии. 2020. Т. 75. № 7. С. 649. (Kormosh Zh.A., Zhurba E.S., Antal I.P., Kormosh A.Zh., Bazel Ya.R. Spectrophotometric determination of 2,4-dichlorophenoxyacetic acid using extraction with astrafloxin // J. Anal. Chem. 2020. V. 75. № 7. P. 909.) https://doi.org/10.1134/s1061934820070114
  13. Wilson R.G., Cheng H.H. Breakdown and movement of 2,4-D in the soil under field conditions // Weed Sci. 1976. V. 24. P. 461. https://doi.org/10.1017/S0043174500066455.
  14. Gubin A.S., Sukhanov P.T., Kushnir A.A., Shikhaliev K.S., Potapov M.A., Kovaleva E.N. Ionic-liquid-modified magnetite nanoparticles for MSPE-GC-MS determination of 2,4-D butyl ester and its metabolites in water, soil, and bottom sediments // Environ. Nanotechnol. Monit. Manag. 2022. V. 17. Article 100652. https://doi.org/10.1016/j.enmm.2022.100652
  15. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Дисперсионная жидкостно-жидкостная микроэкстракция органических соединений. Обзор обзоров // Журн. аналит. химии. 2020. Т. 75. № 10. С. 867. (Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V. Dispersive liquid-liquid microextraction of organic compounds: An overview of reviews // J. Anal. Chem. 2020. Т. 75. № 10. P. 1237.) https://doi.org/ 10.1134/S1061934820100056
  16. Razaee M., Assadi Y., Hosseini M.R.M., Aghaee E., Ahmadia F., Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction // J. Chromatogr. A. 2006. V. 1116. № 1–2. P. 1. https://doi.org/10.1016/j.chroma.2006.03.007
  17. Rajendran S., Hong Loh S., Mohd Ariffin M., Mohd Afiq Wan Mohd Khalik W. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction employing the response surface method for the preconcentration of basic pharmaceutical drugs: Characterization, method development, and green profile assessment // J. Mol. Liq. 2022. V. 367. Article 120411. https://doi.org/10.1016/j.molliq.2022.120411
  18. Zhao W., Jing X., Tian Y., Feng C. Magnetic Fe3O4@ porous activated carbon effervescent tablet-assisted deep eutectic solvent-based dispersive liquid-liquid microextraction of phenolic endocrine disrupting chemicals in environmental water // Microchem. J. 2020. V. 159. Article 105416. https://doi.org/10.1016/j.microc.2020.105416
  19. Lasarte-Aragonés G., Lucena R., Cárdenas S., Valcárcel M. Effervescence assisted dispersive liquid–liquid microextraction with extractant removal by magnetic nanoparticles // Anal. Chim. Acta. 2014. V. 807. Р. 61. https://doi.org/10.1016/j.aca.2013.11.029
  20. Zhang W., Zhou P., Liu W., Wang H., Wang X. Enhanced adsorption/extraction of five typical polycyclic aromatic hydrocarbons from meat samples using magnetic effervescent tablets composed of dicationic ionic liquids and NiFe2O4 nanoparticles // J. Mol. Liq. 2020. V. 315. Article 113682. https://doi.org/10.1016/j.molliq.2020.113682
  21. Wang X., Xu G., Guo X., Chen X., Duan J., Gao Z. et al. Effervescent tablets containing magnetic ionic liquids as a non-conventional extraction and dispersive agent for speciation of arsenite and arsenate in vegetable samples // J. Mol. Liq. 2018. V. 272. Р. 871. https://doi.org/10.1016/j.molliq.2018.10.112
  22. Gao M., Wang H., Wang J., Wang X., Wang H. Effervescence-enhanced microextraction based on acidic ionic liquids and in situ metathesis reaction for bisphenol detection in milk samples // Food Anal. Methods. 2022. V. 15. № 7. Р. 2036. https://doi.org/10.1007/s12161-022-02263-w
  23. Wu J., Xu Z., Pan Y., Shi Y., Bao X., Li J. et al. Combination of in situ metathesis reaction with a novel “magnetic effervescent tablet-assisted ionic liquid dispersive microextraction” for the determination of endogenous steroids in human fluids // Anal. Bioanal. Chem.2018. V. 410. № 12. Р. 2921. https://doi.org/10.1007/s00216-018-0973-2
  24. Zhou P., Wang R., Fan R., Yang X., Mei H., Chen H. et al. Magnetic amino-functionalized metal-organic frameworks as a novel solid support in ionic liquids-based effervescent tablets for efficient extraction of polycyclic aromatic hydrocarbons in milks // Ecotoxicol. Environ. Saf. 2021. V. 222. Article 112482. https://doi.org/10.1016/j.ecoenv.2021.112482
  25. Molaei S., Saleh A., Ghoulipour V., Seidi S. Centrifuge-less emulsification microextraction using effervescent co2 tablet for on-site extraction of pahs in water samples prior to GC-MS detection // Chromatographia. 2016. V. 79. № 9-10. Р. 629. https://doi.org/10.1007/s10337-016-3069-1
  26. Zhou P., Chen K., Gao M., Qu J., Zhang Z., Dahlgren R.A. et al. Magnetic effervescent tablets containing ionic liquids as a non-conventional extraction and dispersive agent for determination of pyrethroids in milk // Food Chem. 2018. V. 268. Р. 468. https://doi.org/10.1016/j.foodchem.2018.06.099
  27. Yang M., Wu X., Jia Y., Xi X., Yang X., Lu R. et al. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology // Anal. Chim. Acta. 2016. V. 906. P. 118. https://doi.org/10.1016/j.aca.2015.12.019
  28. Li Y., Hu J., Liu W., Jin L., Zhou P., Zhang Y. et al. Magnetic effervescent tablet-assisted ionic liquid-based dispersive liquid-liquid microextraction of polybrominated diphenyl ethers in liquid matrix samples // Talanta. 2019. Vol. 195. P. 785. https://doi.org/10.1016/j.talanta.2018.11.106
  29. Wu J., Li J., Chen Y., Bao X., Tang H., Ma S. et al. Preconcentration/extraction of phthalate esters in milk samples using mFe2O4-based magnetic ionic liquid effervescent tablets consisting of accessory functional fillers // Food Anal. Methods. 2019. V. 12. № 9. Р. 2106. https://doi.org/10.1007/s12161-019-01535-2
  30. Fahimirad B., Rangraz Y., Elhampour A., Nemati F. Diphenyl diselenide grafted onto a Fe3O4-chitosan composite as a new nanosorbent for separation of metal ions by effervescent salt-assisted dispersive magnetic micro solid-phase extraction // Microchim. Acta. 2018. V. 185. Article 560. https://doi.org/10.1007/s00604-018-3094-x
  31. Zhang J., Li M., Yang M., Peng B., Li Y., Zhou W. et al. Magnetic retrieval of ionic liquids: Fast dispersive liquid–liquid microextraction for the determination of benzoylurea insecticides in environmental water samples // J. Chromatogr. A. 2012. V. 1254. P. 23. https://doi.org/10.1016/j.chroma.2012.07.051
  32. Егунова О.Р., Решетникова И.С., Казимирова К.О., Штыков С.Н. Магнитная твердофазная экстракция и флуориметрическое определение некоторых фторхинолонов // Журн. аналит. химии. 2020. Т. 75. № 1. С. 31. (Egunova O.R., Reshetnikova I.S., Kazimirova K.O., Shtykov S.N. Magnetic solid-phase extraction and fluorimetric determination of some fluoroquinolones // J. Anal. Chem. 2020. V. 75. № 1. P. 24.) https://doi.org/10.1134/S1061934820010062
  33. Ahmed S.F., Mofijur M., Parisa T.A., Islam N., Kusumo F., Inayat A. et al. Progress and challenges of contaminate removal from wastewater using microalgae biomass // Chemosphere. 2022. V. 286. Article 131656. https://doi.org/10.1016/j.chemosphere.2021.131656
  34. Кушнир А.А., Сыпко К.С., Губин А.С., Сизо К.О., Суханов П.Т. Применение шелухи риса (Oryza sativa) в качестве сорбционного материала для удаления поллютантов из водных сред // Химия растительного сырья. 2022. № 3. С. 5. https://doi.org/10.14258/jcprm.20220310943.
  35. Gubin A.S, Sukhanov P.T., Kushnir A.A., Shikhaliev Kh.S, Potapov M.A., Kovaleva E.N. Monitoring of phenols in natural waters and bottom sediments: preconcentration on a magnetic sorbent, GC-MS analysis, and weather observations // Chem. Pap. 2021. V. 75. № 4. P. 1445. https://doi.org/10.1007/s11696-020-01398-6
  36. Сыпко К.С., Губин А.С., Кушнир А. А., Суханов П.Т. Применение магнитных углей, полученных из растительного сырья на основе шелухи риса, для извлечения хлорфеноксиуксусных кислот и их метаболитов // Сорбционные и хроматографические процессы. 2023. T. 23. № 3. С. 395. https://doi.org/10.17308/sorpchrom.2023.23/11319.
  37. Чурилина Е.В., Кушнир А.А., Суханов П.Т., Мастюкова Т.В., Шаталов Г.В., Зарытовских О.А. Термодинамика сорбции нитрофенолов из водных сред полимером на основе N-винилпирролидона // Журн. общ. химии. 2013. Т. 83. № 11. С. 1835. (Churilina E.V., Kushnir A.A., Sukhanov P.T., Mastyukova T.V., Zarytovskikh O.A., Shatalov G.V. Thermodynamics of nitrophenols sorption from aqueous media with N-vinylpyrrolidone-based polymer // Russ. J. Gen. Chem. 2013. V. 83. № 11. P. 2032.) https://doi.org/10.1134/S1070363213110108
  38. Wee S.-B., Oh H.-C., Kim T.-G., An G.-S., Choi S.-C. Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness // J. Nanopart. Res. 2017. V. 19. № 4. P. 143. https://doi.org/10.1007/s11051-017-3813-y
  39. Xu P., Wang H., Tong R., Du Q., Zhong W. Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization // Colloid Polym. Sci. 2006. V. 284. № 7. P. 755. https://doi.org/10.1007/s00396-005-1428-9

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. 1. Preparation and application of effervescent tablets for sorption of dichlorophenoxycarboxylic acids and chlorophenols: (a) forms for pressing tablets, (b) appearance of tablets based on Fe3O4/C, (c) dissolution and mixing due to CO release, (d) extraction of Fe3O4/C with a neodymium magnet after sorption concentration.

Baixar (161KB)
3. 2. The degree of extraction (R, %) of dichlorophenoxycarboxylic acids and chlorophenols, depending on the duration of sorption with (a) magnetic and (b) non-magnetic carbon and (c) the composition of the tablets (the numbers correspond to the composition given in Table 1).

Baixar (275KB)
4. 3. The zeta potential of Fe3O4/C sorbent (1) and coal (2) obtained by a similar algorithm from rice husks.

Baixar (57KB)
5. 4. Chromatogram of a model sample of (a) river water and (b) soil contaminated with dichlorophenoxy carboxylic acids and chlorophenols. Peak identification: 1 – 4-HF; 2 –2.4-DHF; 3 – 2.4-D; 4 – 2.4-DP; 5 – 2.4-DM.

Baixar (154KB)
6. Fig. 5

Baixar (28KB)
7. Fig. 6

Baixar (29KB)
8. Fig. 7

Baixar (27KB)
9. Fig. 8

Baixar (25KB)
10. Fig. 9

Baixar (22KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024