Electrochemical immunosensors based on gold nanoparticles for the determination of ovalbumin in immunobiological preparations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A sandwich-type voltammetric immunosensor based on conjugates of gold nanoparticles (AuNP) with specific immunoglobulins (IgG) against ovalbumin (IgG@AuNP) is developed for the determination of ovalbumin in some immunobiological preparations. The IgG@AuNP conjugate is synthesized by passive adsorption. A carbon-containing planar printed electrode modified by laser reduced graphene oxide is used as a substrate electrode for immobilizing the receptor layer of specific immunoglobulins. A possibility of the catalytic reduction of silver nitrate with a mixture of reducing agents, citric acid and metol, is considered in order to enhance the signal of AuNP. Conditions for the voltammetric recording of the electrochemical signal of silver on an immunosensor, which has been successfully tested in determining ovalbumin residues in some immunobiological drugs, are selected. Enzyme-linked immunosorbent assay is used as a reference method.

全文:

受限制的访问

作者简介

Е. Dorozhko

National Research Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: evd@tpu.ru
俄罗斯联邦, 634050, Tomsk, Lenin Avenue 30

A. Solomonenko

National Research Tomsk Polytechnic University

Email: evd@tpu.ru
俄罗斯联邦, 634050, Tomsk, Lenin Avenue 30

M. Saqib

National Research Tomsk Polytechnic University

Email: evd@tpu.ru
俄罗斯联邦, 634050, Tomsk, Lenin Avenue 30

V. Semin

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: evd@tpu.ru
俄罗斯联邦, 634055, Tomsk, Academic Avenue, 2/4

参考

  1. Yamamoto T., Juneja L. R., Hatta H., Kim M. Hen Eggs: Basic and Applied Science. CRC Press, 1996. 216 p.
  2. Edevag G., Eriksson M., Granström M. The development and standardization of an ELISA for ovalbumin determination in influenza 101 vaccines // J. Biol. Stand. 1986. V. 14. № 3. P. 223. https://doi.org/10.1016/0092-1157(86)90007-7
  3. Давлетбаева Л.Р. Валидация количественных иммуноферментных тест-систем для контроля качества медицинских иммунобиологических препаратов. Дис. ... канд. биол. наук. Уфа: Министерство здравоохранения и социального развития Российской федерации, 2007. 111 с.
  4. Полтавченко А.Г., Полтавченко Д.А., Загоскина Т.Ю. Перспективы использования коллоидного серебра как маркера иммуноанализа // Сибирь-Восток. 2002. Т. 3. № 51. С. 10.
  5. Iglesias-Mayor A., Amor-Gutiérrez O., Costa-García A., de la Escosura-Muñiz A. Nanoparticles as emerging labels in electrochemical immunosensors // Sensors. 2019. V. 19. № 23. Article 5137. https://doi.org/10.3390/s19235137
  6. Beck F., Horn C., Baeumner A. J. Ag nanoparticles outperform Au nanoparticles for the use as label in electrochemical point-of-care sensors // Anal. Bioanal. Chem. 2022. V. 414. P. 475. https://doi.org/10.1007/s00216-021-03288-6
  7. Frens G. Controlled nucleation for the regulation of particle size in monodisperse gold suspensions // Nat. Phys. Sci. 1973. V. 241. № 105. P. 20. https://doi.org/10.1038/physci241020a0
  8. Schwartzbach S. D., Osafune T. Immunoelectron Microscopy: Methods and Protocols. Totowa, NJ: Humana Press, 2010. 351 p.
  9. Rodriguez R.D., Khalelov A., Postnikov P.S., Lipovka A., Dorozhko Е., Amin I., Murastov G.V., Chen J.-J., Sheng W., Trusova M.E., Chehimi M.M., Sheremet E. Beyond graphene oxide: Laser engineering functionalized graphene for flexible electronics // Materials Horizons. 2020. V. 7. № 4. P. 1030. https://doi.org/10.1039/C9MH01950B
  10. Saqib M., Dorozhko E.V., Barek J., Vyskocil V., Korotkova E.I., Shabalina A.V. A laser reduced graphene oxide grid electrode for the voltammetric determination of carbaryl // Molecules. 2021. V. 26. № 16. Atricle 5050. https://doi.org/10.3390/molecules26165050
  11. Rusling J. F. Nanomaterials-based electrochemical immunosensors for proteins // Chemical Record. 2012. V. 12. № 1. P. 164. https://doi.org/10.1002/tcr.201100034
  12. Qin X., Dong Y., Wang M., Zhu Z., Li M., Chen X. et al. C-dots assisted synthesis of gold nanoparticles as labels to catalyze copper deposition for ultrasensitive electrochemical sensing of proteins // Sci. China Chem. 2018. V. 61. P. 476. https://doi.org/10.1007/s11426-017-9204-8
  13. Chen Z.-P., Peng Z.-F., Luo Y., Qu B., Jiang J.-H., Zhang X.-B. et al. Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement // Biosens. Bioelectron. 2007. V. 23. № 4. P. 485. https://doi.org/10.1016/j.bios.2007.06.005
  14. Zhao C., Wu J., Ju H., Yan F. Multiplexed electrochemical immunoassay using streptavidin/nanogold/carbon nanohorn as a signal tag to induce silver deposition // Anal. Chim. Acta. 2014. V. 847. P. 37. https://doi.org/10.1016/j.aca.2014.07.035
  15. Полтавченко А.Г., Ерш А.В., Крупницкая Ю.А. Выбор системы детекции для мультиплексного дот-иммуноанализа антител // Клиническая лабораторная диагностика. 2016. Т. 61. № 4. С. 229.
  16. ICH Q. R. The international council for harmonisation of technical requirements for pharmaceuticals for human use (ICH). Text and methodology Q. 2022. V. 2.
  17. Экспериандова Л.П., Беликов К.Н., Химченко С.В., Бланк Т.А. Еще раз о пределах обнаружения и определения // Журн. аналит. химии. 2010. Т. 65. №. 3. С. 229. (Eksperiandova L.P., Belikov K.N., Khimchenko S.V., Blank T.A. Once again about determination and detection limits // J. Anal. Chem. 2010. V. 65. P. 223. https://doi.org/10.1134/S1061934810030020)
  18. Dankwardt A., Hock B., Simon R., Freitag D., Kettrup A. Determination of non-extractable triazine residues by enzyme immunoassay: Investigation of model compounds and soil fulvic and humic acids // Environ. Sci. Technol. 1996. V. 30 № 12. P. 3493. https://doi.org/10.1021/es9601604

补充文件

附件文件
动作
1. JATS XML
2. 1. Diagram of an electrochemical immunosensor for the determination of ovalbumin in vaccines.

下载 (178KB)
3. Fig. 2. Light absorption spectra in the visible and UV regions in bidistilled water (1) of Au (2) NPS and IgG@Au (3)NPS conjugates.

下载 (52KB)
4. Fig. 3. Transmission electron microscopy images of (a) Au NPS and (b) IgG conjugates@Au NPS (IgG contrast with 2.0% uranyl acetate solution).

下载 (173KB)
5. 4. Cyclic voltammograms (a) HCAi of IgG@HCAi conjugates on a carbon–containing planar printed electrode in 0.1 M HCl-NaCl background electrolyte solution (1 :1, by volume), v = 100 mV/s, before immobilization of the receptor layer (1), after immobilization of the receptor layer (2); (b) cyclic voltammograms of silver after manifestation on the surface of an electrochemical immunosensor in different background electrolytes: 1 – 0.05 M HCl–0.05 M NaClO4 solution (1 : 1), 2 – 0.25 M KNO3 solution–0.5 M HNO3 (1 : 1), the volume of the background electrolyte is 200 µl.

下载 (105KB)
6. Fig. 5. (a) Image of the surface of the immunosensor obtained by scanning electron microscopy after catalytic reduction of silver with a mixture of 0.2% citric acid and 0.25% methol on HCAi conjugates IgG@HCAi (electron backscattering mode of the surface); (b) the EMF spectrum of the immunosensor surface after catalytic reduction of silver with characteristic X-ray lines of C, O, Au and Ag.

下载 (151KB)
7. 6. Calibration dependence for the determination of ovalbumin using an electrochemical immunosensor in the concentration range from 0.125 to 128 ng/ml (insert – anodic inversion voltammograms of silver oxidation).

下载 (84KB)

版权所有 © Russian Academy of Sciences, 2024