A theory of the evolutionary role of hereditary tumors (carcino-evo-devo): the history and the current state. Part 4. A general theory of increasing biological complexity in progressive evolution
- 作者: Kozlov A.P.1,2,3
-
隶属关系:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Biomedical Center
- Peter the Great St. Petersburg Polytechnic University
- 期: 卷 144, 编号 5 (2024)
- 页面: 478-487
- 栏目: Articles
- ##submission.dateSubmitted##: 27.06.2025
- ##submission.datePublished##: 20.09.2024
- URL: https://snv63.ru/0042-1324/article/view/686126
- DOI: https://doi.org/10.31857/S0042132424050011
- EDN: https://elibrary.ru/OHFLAF
- ID: 686126
如何引用文章
全文:
详细
New chapters of carcino-evo-devo theory are devoted to tumor participation in biological computational processes; the principle of increase in biological complexity; and the formula of complexity growth in progressive evolution based on carcino-evo-devo diagrams. The conclusion is made that new chapters establish the basis of a more general theory — the theory of the increase in complexity, the special part of which is the carcino-evo-devo theory.
全文:

作者简介
A. Kozlov
Vavilov Institute of General Genetics, Russian Academy of Sciences; Biomedical Center; Peter the Great St. Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: contact@biomed.spb.ru
俄罗斯联邦, Moscow; St. Petersburg; St. Petersburg
参考
- Козлов А.П. Регуляторные механизмы как выражение и результат эволюции конкурентных отношений между генами. Соленостные адаптации водных организмов. Л.: Наука, 1976. С. 237–245.
- Козлов А.П. Принципы многоуровневого развития организмов. Проблемы анализа биологических систем. М.: МГУ, 1983. С. 48–62.
- Козлов А.П. Теория эволюционной роли опухолей, carcino-evo-devo. М.: Акварель, 2023. 72 с.
- Козлов А. П. Теория эволюционной роли наследуемых опухолей (carcino-evo-devo): история развития и современное состояние. Часть 3. Современное состояние теории carcino-evo-devo и ее взаимоотношения с другими биологическими науками // Успехи соврем. биол. 2024. Т. 144 (4). С. 374–401.
- Ламарк Ж.Б. Философия зоологии. М., Л.: Гос. изд-во биол. и мед. литературы, 1935. 292 с.
- Capp J.P. Stochastic gene expression is the driving force of cancer // BioEssays. 2011. V. 33 (10). P. 781–782.
- Capp J.P. Tissue disruption increases stochastic gene expression thus producing tumors: cancer initiation without driver mutation // Int. J. Cancer. 2017. V. 140. P. 2408–2413.
- Davidson E.H. The regulatory genome. USA, UK: Academic Press/Elsevier, 2006. 304 p.
- Felts S.J., Tang X., Willett B. et al. Stochastic changes in gene expression promote chaotic dysregulation of homeostasis in clonal breast tumors // Commun. Biol. 2019. V. 2. P. 206.
- Kozlov A.P. Evolution of living organisms as a multilevel process // J. Theor. Biol. 1979. V. 81 (1). P. 1–17.
- Kozlov A.P. Gene competition and the possible evolutionary role of tumors // Med. Hypotheses. 1996. V. 46 (2). P. 81–84.
- Kozlov A.P. The possible evolutionary role of tumors in the origin of new cell types // Med. Hypotheses. 2010. V. 74. P. 177–185.
- Kozlov A.P. Evolution by tumor neofunctionalization: the role of tumors in the origin of new cell types, tissues and organs. 1st ed. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Academic Press/Elsevier, 2014. 248 p.
- Kozlov A.P. Expression of evolutionarily novel genes in tumors // Infect. Agent Cancer. 2016. V. 11 (34).
- Kozlov A.P. The role of heritable tumors in evolution of development: a new theory of carcino-evo-devo // Acta Naturae. 2019. V. 11 (4). P. 65–72.
- Kozlov A.P. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo) // Infect. Agent. Cancer. 2022a. V. 17 (1). Art. 2.
- Kozlov A.P. Mammalian tumor-like organs. 2. Mammalian adipose has many tumor features and obesity is a tumor-like process // Infect. Agent. Cancer. 2022b. V. 17 (1). Art. 15.
- Kozlov A.P. Biological computation and compatibility search in the possibility space as the mechanism of complexity increase during progressive evolution // Evol. Bioinf. 2022c. V. 18. P. 1–5.
- Kozlov A.P. The theory of carcino-evo-devo and its non-trivial predictions // Genes. 2022d. V. 13 (1). P. 2347.
- Kozlov A.P. Carcino-evo-devo, a theory of the evolutionary role of hereditary tumors // Int. J. Mol. Sci. 2023a. V. 24 (10). P. 8611.
- Kozlov A.P. Diagrams describing the evolution of gene expression, the emergence of novel cell types during evolution, and evo-devo // Gene Expression. 2023b. V. 22 (3). P. 262–269.
- Kozlov A.P. Structural complexity growth as a fundamental law of nature. Multilevel increase in complexity, frozen accidents, and transitory forms in macroevolution // Paleontol. J. 2024. V. 58 (12). P. 1438–1448.
- Lamarck J.B. Philosophie Zoologique. Paris: Dentu, 1809. 718 p.
- Makashov A.A., Malov S.V., Kozlov A.P. Oncogenes, tumor suppressor and differentiation genes represent the oldest human gene classes and evolve concurrently // Sci. Reports. 2019. V. 9. P. 16410.
- Markov A.V., Anisimov V.A., Korotayev A.V. Relationship between genome size and organismal complexity in the lineage leading from prokaryotes to mammals // Paleontol. J. 2010. V. 44 (4). P. 363–373.
- Marquard S., Pavlopoulou A., Takan I. et al. A system-based key innovation-driven approach infers co-option of jaw developmental programs during cancer progression // Front. Cell Dev. Biol. 2021. V. 9. P. 682619. https://doi.org/110.3389/fcell.2021.682619
- Matyunina E.A., Emelyanov A.V., Kurbatova T.V. et al. Evolutionarily novel genes are expressed in transgenic fish tumors and their orthologs are involved in development of progressive traits in humans // Infect. Agent. Cancer. 2019. V. 14 (46).
- Ohno S. Evolution by gene duplication. N. Y.: Springer-Verlag, 1970. 150 p.
- Popper K.R. A world of propensities: two new views of causality. Bristol, UK: Thoemmes Antiquarian Books Ltd., 1990. P. 24–329.
- Raj A., van Oudenaarden A. Stochastic gene expression and its consequences // Cell. 2008. V. 135. P. 216–226.
- Russo G., Tramontano A., Iodice I. et al. Epigenome chaos: stochastic and deterministic DNA methylation events drive cancer evolution // Cancers (Basel). 2021. V. 13 (8). P. 1800.
补充文件
附件文件
动作
1.
JATS XML
2.
Fig. 1. Carcino-evo-devo diagrams showing the coevolution of individual and neoplastic development (a) and four successive steps of progressive evolution with the intermediate form Carcino (b). (a) Main diagram. Devo — normal ontogeneses; Carcino — ontogeneses with heritable tumors; Evo — progressive evolution of ontogeneses. (b) Main diagram, expanded in evolutionary time. Devo 1 — ancestral organism; Devo 2, Devo 3, Devo 4, and Devo 5 — ontogeneses with evolutionarily new progressive features; Carcino 1, Carcino 2, Carcino 3, and Carcino 4 — transitional forms — tumor-bearing organisms; Evo 1, Evo 2, Evo 3, and Evo 4 — successive stages of progressive evolution. Arrows indicate participation in the corresponding processes or essential connections. Curved arrows indicate the ability to reproduce.
下载 (16KB)
3.
Fig. 2. Carcino-evo-devo diagram describing tumor-like organs and atypical tumor organs (according to: Kozlov, 2022a, with changes). devo — normal ontogenesis; cancer — ontogenesis with inherited tumors; evo — progressive evolution of development; devo’ — tumor-like organs; carcino’ — atypical tumor organs.
下载 (4KB)
4.
Fig. 3. Formula (I) of multi-level stepwise increase in structural and functional complexity of multicellular organisms in progressive evolution (according to: Kozlov, 2023b, with changes).
下载 (28KB)
5.
Fig. 4. Formula (II) of multi-level stepwise increase in structural and functional complexity of multicellular organisms in progressive evolution.
下载 (23KB)
