Plant fungal endophytes as a source of biologically active substances
- Авторлар: Klemper A.V.1
-
Мекемелер:
- Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of the Russian Federation
- Шығарылым: Том 61, № 2 (2025)
- Беттер: 56-64
- Бөлім: REVIEWS
- URL: https://snv63.ru/0033-9946/article/view/687217
- DOI: https://doi.org/10.31857/S0033994625020046
- EDN: https://elibrary.ru/FYWSIG
- ID: 687217
Дәйексөз келтіру
Аннотация
The review focuses on endophytic fungi, whose mycelium colonizes living plants without visible manifestation. They are also found in all other kingdoms of eukaryotes. It is noted that the cultivation of fungal endophytes can reduce the load on the harvested medicinal plant resources. The concept of “endophytes” and their types, the history of discovery, classification, approaches to taxonomic identification, the possibility of independent existence in the form of fruiting bodies outside plants, endophytic fungal communities in one plant, distribution in groups of plants and their parts are briefly characterized. The ecological aspects of interaction with plants are considered in more detail – types of beneficial effects for plants and endophytic fungi, the variety of substances formed by cultures of fungal endophytes, and their biological activity. It is shown that in certain cases, substances considered to be active constituents of medicinal plants are formed by endophytic fungi living within them. In many cases, they also form substances with various types of activity that have not been previously isolated from plants.
Толық мәтін

Авторлар туралы
A. Klemper
Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of the Russian Federation
Хат алмасуға жауапты Автор.
Email: alexei.klemper@pharminnotech.com
ORCID iD: 0000-0003-2995-7570
Ресей, St. Petersburg
Әдебиет тізімі
- Adeleke B. S., Babalola O. O. 2021. The plant endosphere-hidden treasures: a review of fungal endophytes. — Biotechol. Genet. Eng. Rev. 37(2): 154–177. https://doi.org/10.1080/02648725.2021.1991714
- Благовещенская Е. Ю., Дьяков Ю. Т. 2005. Эндофитные грибы злаков. — Микология и фитопатология. 39(3):1–15. https://www.binran.ru/files/journals/MiF/MiF_2005_39_3.pdf (доступ 03.12.2024) Blagoveshchenskaya E. Yu., Dyakov Yu.T. 2005. Fungal endophytes of cereal grasses. — Mycology and Phytopathology. 39(3): 1–15. https://www.binran.ru/files/journals/MiF/MiF_2005_39_3.pdf (Accessed 03.12.2024) (In Russian)
- Bary A. de. 1866. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Leipzig. 316 p. https//doi.org/10/5962/bhl.title.120970
- Kohlmeyer J., Kohlmeyer E. 1979. Marine mycology: The higher fungi. New York, San Francisco, London. 690 p. https://doi.org/10.1016/C2013-0-10998-1
- Song Q., Li X.-M., Hu X.-Y., Li X., Chi L.-P., Li H.-L., Wang B.-G. 2019. Antibacterial metabolites from Ascidian-derived fungus Aspergillus clavatus AS-107. — Phytochem. Lett. 34: 30–34.
- Wen J., Okyere S. K., Wang S., Wang J., Xie L., Ran Y., Hu Y. 2022. Endophytic fungi: An effective alternative source of plant-derived bioactive compounds for pharmacological studies. — J. Fungi. 8(2): 205. https://doi.org/10.3390/jof8020205
- Яруллина Л. Г., Ибрагимов Р. И., Цветков В. О., Яруллина Л. М., Шпирная И. А. 2016. Цитохимические и биохимические методы исследования микроорганизмов – возбудителей болезней растений: учебное пособие. Уфа. 92 с. https://биоуфа.рф/студентам/citokhimicheskie-i-biokhimicheskie-metody.pdf (доступ 03.12.2024) Yarullina L. G., Ibragimov R. I., Tsvetkov V. O., Yarullina L. M., Shpirnaya I. A. 2016. [Cytochemical and biochemical methods for studying plant pathogenic microorganisms: a course book]. Ufa. 92 p. https://биоуфа.рф/студентам/citokhimicheskie-i-biokhimicheskie-metody.pdf (Accessed 03.12.2024) (In Russian)
- Oberhofer M., Malfent F., Zehl M., Urban E., Wackerlig J., Reznicek G., Vignolle G. A., Rückert C., Busche T., Wibberg D., Zotchev S. B. 2022. Biosynthetic potential of the endophytic fungus Helotiales sp. BL73 revealed via compound identification and genome mining. — Appl. Environ. Microbiol. 88(6): e02510-21. https://doi.org/10.1128/aem.02510-21
- Digra S., Nonzom S. 2023. An insight into endophytic antimicrobial compounds: an updated analysis. — Plant Biotechnol. Rep. 17(4): 427–457. https://doi.org/10.1007/s11816-023-00824-x
- Rodriguez R. J., White J. F., Arnold A. E., Redman R. S. 2009. Fungal endophytes: diversity and functional roles. — New Phytol. 182: 314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
- Gakuubi M. M., Munusamy M., Liang Z. X., Ng S. B. 2021. Fungal endophytes: a promising frontier for discovery of novel bioactive compounds. — J. Fungi. 7(10): 786. https://doi.org/10.3390/jof7100786
- Лессо Т. 2003. Грибы (определитель). Перевод с англ. М. 304 с. Laessoe T. 2003. Mushrooms (identification guide). Transl. from Engl. Moscow. 304 p. (In Russian)
- Duan X.-X., Qin D., Song H.-C., Gao T.-C., Zuo S.-H., Yan X., Wang J.-Q., Ding X., Di Y.-T., Dong J.-Y. 2019. Irpexlacte A-D, four new bioactive metabolites of endophytic fungus Irpex lacteus DR10-1 from the waterlogging tolerant plant Distylium chinense. — Phytochem. Lett. 32: 151–156. https://doi.org/10.1016/j.phytol.2019.06.001
- Luo H.-Z., Jiang H., Sun B., Wang Z.-N., Jia A.-Q. 2022. Sesquiterpenoids and furan derivatives from the Orychophragmus violaceus (L.) O. E. Schulz endophytic fungus Irpex lacteus OV38. — Phytochemistry. 194: 112996. https://doi.org/10.1016/j.phytochem.2021.112996
- Pan Y., Zheng W., Yang S. 2020. Chemical and activity investigation on metabolites produced by an endophytic fungi Psathyrella candolleana from the seed of Ginkgo biloba. — Nat. Prod. Res. 34(21): 3130–3133. https://doi.org/10.1080/14786419.2019.1607335
- Tello S. A., Silva-Flores P., Agerer R., Halbwachs H., Beck A., Peršoh D. 2014. Hygrocybe virginea is a systemic endophyte of Plantago lanceolata. — Mycol. Progress. 13(3): 471–475. https://doi.org/10.1007/s11557-013-0928-0
- Jia M., Chen L., Xin H.-L., Zheng C.-J., Rahman K., Han T., Qin L.-P. 2016. Friendly relationship between endophytic fungi and medicinal plants: A systematic review. — Front Microbiol. 7: 906. https://doi.org/10.3389/fmicb.2016.00906
- Kalotas A. P. 1996. Aboriginal knowledge of fungi. — In: Fungi of Australia. Volume 1B. Introduction – Fungi in the environment. Canberra. P. 269–295.
- Saucedo-García A., Anaya A. L., Espinosa-García F. J., González M. C. 2014. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico. — PloS one. 9(6): e98454. https://doi.org/10.1371/journal.pone.0098454
- Zhang H., Ying C., Bai X. 2014. Advancement in endophytic microbes from medicinal plants. — Int. J. Pharm. Sci. Res. 5(5): 1589–1600. https://doi.org/10.13040/IJPSR.0975-8232.5(5).1589-1600
- Xu X.-H., Su Z.-Z., Wang C., Kubicek C. P., Feng X.-X., Mao L.-J., Wang J.-Y., Chen C, Lin F.-C., Zhang C.-L. 2014. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte. — Sci. Rep. 4: 5783. https://doi.org/10.1038/srep05783
- Sachin N., Manjunatha B. L., Mohana Kumara P., Ravikanth G., Shweta S., Suryanarayanan T. S., Ganeshaiah K. N., Uma Shaanker R. 2013. Do endophytic fungi possess pathway genes for plant secondary metabolites. — Current Science. 104(2): 178–182. https://www.currentscience.ac.in/Volumes/104/02/0178.pdf
- Tiwari P., Bae H. 2020. Horizontal gene transfer and endophytes: An implication for the acquisition of novel traits. — Plants. 9(3): 305. https://doi.org/10.3390/plants9030305
- Redkar A., Sabale M., Zuccaro A., Di Pietro A. 2022. Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. — Plant Biology. 67: 102226. https://doi.org/10.1016/j.pbi.2022.102226
- Ogura-Tsujita Y., Gebauer G., Hashimoto T., Umata H., Yukawa T. 2009. Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confuse gains carbon from saprotrophic Mycena. — Proc. Biol. Sci. B. 276(1657): 761–767. https://doi.org/10.1098/rspb.2008.1225
- Lee C. G., Shim S. H. 2020. Endophytic fungi inhabiting medicinal plants and their bioactive secondary metabolites. — Nat. Prod. Sci. 26(1): 10–27. https://doi.org/10.20307/nps.2020.26.1.10
- Бобушева С. Т., Доолоткельдиева Т. Д. 2008. Эндофитные грибы-симбионты высших растений различных экосистем Кыргызстана. — Manas Journal of Natural Sciences. 1(9): 1–8. https://dergipark.org.tr/en/pub/manasfen/issue/49125/626963 Bobusheva S. T., Doolotkeldieva T. D. 2008. Endophyte fungi – symbiont of the plants of different ecosystem of Kyrgyzstan – Manas Journal of Natural Sciences. 1(9): 1–8. https://dergipark.org.tr/en/pub/manasfen/issue/49125/626963 (In Russian)
- Благовещенская Е. Ю. 2006. Эндофитные грибы злаков. Автореф. дис. … канд. биол. наук. М. 24 с. https://doi.org/10.13140/RG.2.1.4041.8965 Blagoveshchenskaya E. Yu. 2006. [Endophytic fungi of cereals. Abstr. … Dis. Cand. (Biology) Sci.]. Moscow. 24 p. https://doi.org/10.13140/RG.2.1.4041.8965 (In Russian)
- Caruso G., Abdelhamid M. T., Kalisz A., Sekara A. 2020. Linking endophytic fungi to medicinal plants therapeutic activity. A case study on Asteraceae. — Agriculture. 10(7): 286. https://doi.org/10.3390/agriculture10070286
- Dutta D., Puzari K. C., Gogoi R., Dutta P. 2014. Endophytes: exploitation as a tool in plant protection. — Braz. Arch. Biol. Technol. 57(5): 621–629. https://doi.org/10.1590/S1516-8913201402043
- Mack K. M. L., Rudgers J. A. 2008. Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. — Oikos. 117(2): 310–320. https://doi.org/10.1111/j.2007.0030-1299.15973.x
- Backman P. A., Sikora R. A. 2008. Endophytes: an emerging tool for biological control. — Biol. Control. 46(1): 1–3. https://doi.org/10.1016/j.biocontrol.2008.03.009
- Hamayun M., Khan S. A., Iqbal I., Na C. I., Khan A. L., Hwang Y. H., Lee B. H., Lee I. J. 2009. Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth. — J. Microbiol. 47(4): 425–430. https://doi.org/10.1007/s12275-009-0268-6
- Almuhayawi M. S., Abdel-Mawgoud M., Al Jaouni S. K., Almuhayawi S. M., Alruhaili M. H., Selim S., Abdelgawad H. 2021. Bacterial endophytes as a promising approach to enhance the growth and accumulation of bioactive metabolites of three species of Chenopodium sprouts. — Plants. 10(12): 2745. https://doi.org/10.3390/plants10122745
- Ansari R. A., Mahmood I., Rizvi R., Sumbul A., Safuiddin 2017. Siderophores: augmentation of soil health and crop productivity. — In: Probiotics in agroecosystem. Singapore: Springer. P. 291–312. https://doi.org/10.1007/978-981-10-4059-7_15
- Paul K., Saha C., Nag M., Mandal D., Naiya H., Sen D., Mitra S., Kumar M., Bose D., Mukherjee G., Naskar N., Lahiri S., Das Ghosh U., Tripathi S., Sarkar M. P., Banerjee M., Kleinert A., Valentine A. J., Tripathy S., Sinharoy S., Seal A. 2020. A tripartite interaction among the basidiomycete Rhodotorula mucilaginosa, N2-fixing endobacteria, and rice improves plant nitrogen nutrition. — Plant Cell. 32(2): 486–507. https://doi.org/10.1105/tpc.19.00385
- Almario J., Jeena G., Wunder J., Langen G., Zuccaro A., Coupland G., Bucher M. 2017. Root-associated fungal microbiota of nonmycorrhizal Arabis alpine and its contribution to plant phosphorus nutrition. — PNAS. 114(44): E9403–E9412. https://doi.org/10.1073/pnas.1710455114
- Márquez L. M., Redman R. S., Rodriguez R. J., Roossinck M. J. 2007. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. — Science. 315(5811): 513–515. https://doi.org/10.1126/science.1136237
- Moraga E. Q. 2020. Entomopathogenic fungi as endophytes: their broader contribution to IPM and crop production. — Biocontrol Sci. Technol. 30(9): 864–877. https://doi.org/10.1080/09583157.2020.1771279
- Mousa W. K., Raizada M. N. 2013. The diversity of antimicrobial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. — Front Microbiol. 4: 65. https://doi.org/10.3389/fmicb.2013.00065
- Rho H., Epps V. V., Wegley N., Doty S. L., Kim S.-H. 2018. Salicaceae endophytes modulate stomatal behavior and increase water use efficiency in rice. — Front. Plant Sci. 9: 188. https://doi.org/10.3389/fpls.2018.00188
- Pang X. J., Zhang S. B., Chen H. L., Zhao W. T., Yang D. F., Xian P. J., Xu L. L., Tao Y. D., Fu H. Y., Yang X. L. 2018. Emericelactones A–D: Four novel polyketides produced by Emericella sp. XL 029, a fungus associated the leaves of Panax notoginseng. — Tetrahedron Lett. 59(52): 4566–4570. https://doi.org/10.1016/j.tetlet.2018.11.032
- Stierle A., Strobel G., Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. — Science. 260(5105): 214–216. https://doi.org/10.1126/science.8097061
- Ancheeva E., Daletos G., Proksch P. 2020. Bioactive secondary metabolites from endophytic fungi. — Current Medicinal Chemistry. 27(11): 1836–1854. https://doi.org/10.2174/0929867326666190916144709
- Tiwari P., Bae H. 2022. Endophytic fungi: Key insights, emerging prospects, and challenges in natural product drug discovery. — Microorganis. 10(2): 360. https://doi.org/10.3390/microorganisms10020360
- Conrado R., Gomes T. C., Roque G. S. C., De Souza A. O. 2022. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. — Antibiotics. 11(11): 1604. https://doi.org/10.3390/antibiotics11111604
- Feng T., Surup F. 2022. Secondary metabolites from fungi – in honor of Prof. Dr. Ji-Kai Liu’s 60th Birthday. — J. Fungi. 8(12): 1271. https://doi.org/10.3390/jof8121271
- Kusari S., Lamshöft M., Zühlke S., Spiteller M. 2008. An endophytic fungus from Hypericum perforatum that produces hypericin. — J. Nat. Prod. 71(2): 159–162. https://doi.org/10.1021/np070669k
- Xia Y., Feng S., Luo S., Cong D., Yu Z., Yang Z., Zhang J. 2012. Studies of rhein-producing endophytic fungus, isolated from Rheum palmatum L. — Fitoterapia. 85(1). https://doi.org/10.1016/j.fitote2012.12.010
- Wang X.-J., Min C.-L., Ge M., Zuo R.-H. 2014. An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. — Curr Microbiol. 68(3): 336–341. https://doi.org/10.1007/s00284-013-0482-7
- Sarsaiya S., Jain A., Fan X., Jia Q., Xu Q., Shu F., Zhou Q., Shi J., Chen J. 2020. New insights into detection of a dendrobine compound from a novel endophytic Trichoderma longibrachiatum strain and its toxicity against phytopathogenic bacteria. — Front. Microbiol. 11: 337. https://doi.org/10.3389/fmicb.2020.00337
- Patil M. P., Patil R. H., Maheshwari V. L. 2015. Biological activities and identification of bioactive metabolite from endophytic Aspergillus flavus L7 isolated from Aegle marmelos. — Curr. Microbiol. 71(1): 39–48. https://doi.org/10.1007/s00284-015-0805-y
- Strobel G. A., Dirkse E., Sears J., Markworth C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. — Microbiology. 147(11): 2943–2950. https://doi.org/10.1099/00221287-147-11-2943
- Settu S., Arunachalam S. 2020. Fungal endophytes: a blooming reservoir for future products. — Int. J. Pharm. Sci. Rev. Res. 65(1): 169–178. http://dx.doi.org/10.47583/ijpsrr.2020.v65i01.026
- Maehara S., Simanjuntak P., Kitamura C., Ohashi K., Shibuya S. 2011. Cinchona alkaloids are also produced by an endophytic filamentous fungus living in Cinchona plant. — Chem. Pharm. Bull. 59(8): 1073–1074. https://doi.org/10.1248/cpb.59.1073
- Yedukondalu N., Arora P., Wadhwa B., Malik F. A., Vishwakarma R. A., Gupta V. K., Riyaz-Ul-Hassan S., Ali A. 2017. Diapolic acid A–B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity. — J. Antibiot. 70(2): 212–215. https://doi.org/10.1038/ja.2016.109
- Mady M. S., Mohyeldin M. M., Ebrahim H. Y., Elsayed H. E., Houssen W. E., Haggag E. G., Soliman R. F., El Sayed K. A. 2016. The indole alkaloid meleagrin, from the olive tree endophytic fungus Penicillium chrysogenum, as a novel lead for the control of c-Met-dependent breast cancer proliferation, migration and invasion. — Bioorg. Med. Chem. 24(2): 113–122. https://doi.org/10.1016/j.bmc.2015.11.038
- Koul M., Kumar A., Deshidi R., Sharma V., Sinqh R. D., Sinqh J., Sharma P. R., Shah B. A., Jaqlan S., Sinqh S. 2017. Cladosporol A triggers apoptosis sensitivity by ROS-mediated autophagic flux in human breast cancer cells. — BMC Cell Biol. 18: 26. https://doi.org/10.1186/s12860-017-0141-0
- Zhao J., Li C., Wang W., Zhao C., Luo M., Mu F., Fu Y., Zu Y., Yao M. 2013. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan (L.) Millsp.). — J. Appl. Microbiol. 115(1): 102–113. https://doi.org/10.1111/jam.12195
- Pongcharoen W., Rukachaisirikul V., Phongpaichit S., Kühn T., Pelzing M., Sakayaroj J., Taylor W. C. 2008. Metabolites from the endophytic fungus Xylaria sp. PSU-D14. — Phytochem. 69(9): 1900–1902. https://doi.org/10.1016/j.phytochem.2008.04.003
- Li H., Xiao J., Gao Y., Tang J. J., Zhang A. L., Gao J. M. 2014. Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. — J. Agric. Food Chem. 62: 3734–3741. https://doi.org/10.1021/jf500390h
- Zhou L., Qin J., Ma L., Li H., Li L., Ning C., Gao W., Yu H., Han L. 2017. Rosoloactone: A natural diterpenoid inducing apoptosis in human cervical cancer cells through endoplasmic reticulum stress and mitochondrial damage. — Biomed. Pharmacother. 95: 355–362. https://doi.org/10.1016/j.biopha.2017.08.069
Қосымша файлдар
