Влияние кислотности каталитических систем на выход 1-бутанола в реакции самоконденсации этанола
- Авторлар: Bagdatov R.A.1, Chistyakov A.V.2, Nikolaev S.A.3, Konstantinov G.I.1
-
Мекемелер:
- Institute of Petrochemical Synthesis named after A. V. Topchiev RAS
- LLC 'MERIDIAN ECOSYSTEM'
- Moscow State University named after M. V. Lomonosov, Faculty of Chemistry
- Шығарылым: Том 65, № 4 (2025)
- Беттер: 318-329
- Бөлім: Articles
- URL: https://snv63.ru/0028-2421/article/view/693425
- DOI: https://doi.org/10.31857/S0028242125040057
- ID: 693425
Дәйексөз келтіру
Аннотация
Изучены закономерности превращения этанола в 1-бутанол в присутствии медьсодержащих катализаторов на основе различных носителей. Выявлено, что немодифицированные носители малоактивны в реакции самоконденсации этанола — конверсия исходного субстрата не превышала 4% при селективности не более 0,9%. Продемонстрировано влияние кислотности каталитических систем на их активность в превращении этанола. Методом ТПД-аммиака были обнаружены три основные области кислотности: низкая кислотность (значение десорбции аммиака менее 50 мкмоль аммиака/г), при котором выход 1-бутанола не превышает 2%; оптимальная область (значение десорбции аммиака 50–400 мкмоль аммиака/г) с выходом 1-бутанола до 28,5%; повышенная кислотность (значение десорбции аммиака более 400 мкмоль аммиака/г) — с выходом 1-бутанола 5–9%. Сравнительный анализ различных подходов к формированию катализаторов демонстрирует преимущество пропитки по влагоемкости, как наиболее перспективного метода.
Негізгі сөздер
Авторлар туралы
R. Bagdatov
Institute of Petrochemical Synthesis named after A. V. Topchiev RAS
Email: bagdatov.ruslan@ips.ac.ru
г. Москва, 119991 Россия
A. Chistyakov
LLC 'MERIDIAN ECOSYSTEM'
Email: bagdatov.ruslan@ips.ac.ru
г. Краснодар, 350010 Россия
S. Nikolaev
Moscow State University named after M. V. Lomonosov, Faculty of Chemistry
Email: bagdatov.ruslan@ips.ac.ru
г. Москва, 119991 Россия
G. Konstantinov
Institute of Petrochemical Synthesis named after A. V. Topchiev RAS
Хат алмасуға жауапты Автор.
Email: bagdatov.ruslan@ips.ac.ru
г. Москва, 119991 Россия
Әдебиет тізімі
- Tse T.J., Wiens D.J., Chicilo F., Purdy S.K., Reaney M.J. Value-added products from ethanol fermentation – A review // Fermentation. 2021. V. 7. № 4. ID 267. https://doi.org/10.3390/fermentation7040267
- Segal D., Bale A.S., Phillips L.J., Sasso A., Schlosser P.M., Starkey C., Makris S.L. Issues in assessing the health risks of n-butanol // J. Appl. Toxicol. 2020. V. 40. № 1. P. 72–86. https://doi.org/10.1002/jat.3820
- García-Hernández A.E., Segovia-Hernández J.G., Sánchez-Ramírez E., Zarazúa G.C., Araujo I.F.H., Quiroz-Ramírez J.J. Sustainable aviation fuel from butanol: a study in optimizing economic and environmental impact through process intensification // Chem. Eng. Process. — Process Intensif. 2024. V. 200. ID 109769. https://doi.org/10.1016/j.cep.2024.109769
- Torres G.M., Frauenlob R., Franke R., Börner A. Production of alcohols via hydroformylation // Catal. Sci. Technol. 2014. V. 5. № 1. P. 34–54. https://doi.org/10.1039/c4cy01131g
- Lin Z., Cong W., Zhang J. Biobutanol production from acetone–butanol–ethanol fermentation: developments and prospects // Fermentation. 2023. V. 9. № 9. ID 847. https://doi.org/10.3390/fermentation9090847
- Травень В.Ф. Органическая химия. М.: БИНОМ. Лаборатория знаний, 2015. 401 с.
- Николаев С.А., Чистяков А.В., Жарова П.А., Цодиков М.В., Кротова И.Н., Эзжеленко Д.И. Синергетический эффект золота и меди в превращении этанола в линейные α-спирты // Нефтехимия. 2016. Т. 56. № 5. С. 502–508. https://doi.org/10.7868/S0028242116050130
- [Nikolaev S.A., Chistyakov A.V., Zharova P.A., Tsodikov M.V., Krotova I.N., Ezzgelenko D.I. Synergistic effect of gold and copper in the catalytic conversion of ethanol to linear α-alcohols // Petrol. Chemistry. 2016. V. 56. № 5. P. 730–737. http://dx.doi.org/10.1134/S0965544116080120]
- Faba L., Cueto J., Portillo M.Á., Villanueva-Perales Á.L., Vidal-Barrero F., Ordóñez S. Understanding the formation of higher alcohols in the liquid-phase ethanol condensation over copper-loaded hydrotalcite-derived mixed oxides // Catal. Today. 2023. V. 423. ID 114297. https://doi.org/10.1016/j.cattod.2023.114297
- Lee J., Lin K.Y.A. Bio-butanol production on heterogeneous catalysts: a review // J. Taiwan Inst. Chem. Eng. 2024. V. 157. ID 105421. https://doi.org/10.1016/j.jtice.2024.105421
- Choi H., Han J., Lee J. Renewable butanol production via catalytic routes // Int. J. Environ. Res. Public Health. 2021. V. 18. № 22. ID 11749. https://doi.org/10.3390/ijerph182211749
- Dai J., Zhang H. Recent advances in selective C–C bond coupling for ethanol upgrading over balanced Lewis acid-base catalysts // Sci. China Mater. 2019. V. 62. P. 1642–1654. https://doi.org/10.1007/s40843-019-9454-x
- Li S., Han X., An H., Zhao X., Wang Y. Повышение стабильности Ni/TiO2-катализаторов в реакции конденсации этанола Гербе: влияние второго металлического компонента // Кинетика и катализ. 2021. Т. 62. № 5. С. 581–590. https://doi.org/10.31857/S0453881121050026
- [Li S., Han X., An H., Zhao X., Wang Y. Improving the catalytic stability of Ni/TiO2 for ethanol Guerbet condensation: influence of second metal component // Kinet. Catal. 2021. V. 62. № 5. P. 632–640. https://doi.org/10.1134/S0023158421050025]
- Wu X., Fang G., Tong Y., Jiang D., Liang Z., Leng W., Liu L., Tu P., Wang H., Ni J., Li X. Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development // ChemSusChem. 2018. V. 11. № 1. P. 71–85. https://doi.org/10.1002/cssc.201701590
- Николаева С.А., Багдатов Р.А., Чистяков А.В., Цодиков М.В. Влияние модификатора M (M = Ca, Sr, Ba) на селективность катализаторов Pd–Cu/Mo/Al2O3 в конверсии этанола в бутанол-1 // Кинетика и катализ. 2024. Т. 65. № 6. С. 646–658. https://doi.org/10.31857/S0453881124060055
- Molina-Ramírez S., Cortés-Reyes M., Herrera C., Larrubia M.A., Alemany L.J. Catalytic upgrading of ethanol to n-butanol over a novel Ca-Fe modified mixed oxide Mg-Al catalyst from hydrotalcite-base precursor // Catal. Today. 2022. V. 394‒396. P. 365–375. https://doi.org/10.1016/j.cattod.2021.07.029
- Chistyakov A.V., Zharova P.A., Nikolaev S.A., Tsodikov M.V. Direct Au-Ni/Al2O3 catalysed cross-condensation of ethanol with isopropanol into pentanol-2 // Catal. Today. 2017. V. 279. Pt. 1. P. 124–132. https://doi.org/10.1016/j.cattod.2016.06.016
- Николаев С.А., Чистяков А.В., Чистякова П.А., Эзжеленко Д.И., Либерман Е.Ю., Конькова Т.В., Цодиков М.В. Влияние носителя на формирование и активность золотосодержащих катализаторов конверсии этанола в бутанол // Нефтехимия. 2021. Т. 61. № 4. С. 504–519. http://dx.doi.org/10.31857/S0028242121040067
- [Nikolaev S.A., Chistyakov A.V., Chistyakova P.A., Ezzhelenko D.I., Liberman E.Y., Konkova T.V., Tsodikov M.V. Effects of support on the formation and activity of gold catalysts for ethanol conversion to butanol // Petrol. Chemistry. 2021. V. 61. № 7. P. 748–761. http://dx.doi.org/10.1134/s0965544121050145]
- Siqueira M.R., Perrone O.M., Metzker G., de Oliveira Lisboa D.C., Thomeo J.C., Boscolo M. Highly selective 1-butanol obtained from ethanol catalyzed by mixed metal oxides: Reaction optimization and catalyst structure behavior // Mol. Catal. 2019. V. 476. ID 110516. https://doi.org/10.1016/j.mcat.2019.110516
- Rubio-Rueda J.A., Quevedo-Hernandez J.P., López M.B., Galindo J.F., Hincapié-Triviño G. Mg/Al and Cu-Mg/Al mixed oxides derived from hydrotalcites as catalysts to produce 1-butanol from ethanol // Mol. Catal. 2024. V. 569. Art. ID 114528. https://doi.org/10.1016/j.mcat.2024.114528
- Hanspal S., Young Z.D., Prillaman J.T., Davis R.J. Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts // J. Catal. 2017. V. 352. P. 182–190. https://doi.org/10.1016/j.jcat.2017.04.036
- Pinzón M., Cortés-Reyes M., Herrera C., Larrubia M.Á., Alemany L.J. Ca-based bifunctional acid-basic model-catalysts for n-butanol production from ethanol condensation // Biofuels Bioprod. Biorefin. 2021. V. 15. № 1. P. 218–230. https://doi.org/10.1002/bbb.2155
- Olcese R., Bettahar M.M. Thermodynamics conditions for Guerbet ethanol reaction // MATEC Web of Conf. 2013. V. 3. ID 01060. https://doi.org/10.1051/matecconf/20130301060
- Ohligschläger A., van Staalduinen N., Cormann C., Mühlhans J., Wurm J., Liauw M.A. The Guerbet reaction network–a ball-in-a-maze-game or: why Ru-MACHO-BH is poor in coupling two ethanol to n-butanol // Chemistry‒Methods. 2021. V. 1. № 4. P. 181–191. http://dx.doi.org/10.1002/cmtd.202100026
- Frolich K., Malina J., Hájek M., Mück J., Kocík J. The utilization of bio-ethanol for production of 1-butanol catalysed by Mg–Al mixed metal oxides enhanced by Cu or Co // Clean Techn. Environ. Policy. 2024. V. 26. № 1. P. 79–92. https://doi.org/10.1007/s10098-023-02581-5
- Kowalska-Kuś J., Held A., Nowińska K., Góra-Marek K. LTA zeolites as catalysts for transesterification of glycerol with dimethyl carbonate // Fuel. 2024. V. 362. Art. ID 130757. https://doi.org/10.1016/j.fuel.2023.130757
- Chen W., Song G., Lin Y., Qiao J., Wu T., Yi X., Kawi S. Synthesis and catalytic performance of Linde-type A zeolite (LTA) from coal fly ash utilizing microwave and ultrasound collaborative activation method // Catal. Today. 2022. V. 397‒399. P. 407–418. https://doi.org/10.1016/j.cattod.2021.07.022
- Mittal H., Al Alili A., Alhassan S.M., Susantyoko R.A. Zeolites and superporous hydrogels-based hybrid composites as solid desiccants to capture water vapors from humid air // Micropor. Mesopor. Mater. 2022. V. 342. ID 112116. https://doi.org/10.1016/j.micromeso.2022.112116
- Seejandee P., Osakoo N., Sereerattanakorn P., Krukkratoke P., Keawkumay C., Pansakdanon C., Wittayakun J., Chanlek N., Deekamwong K., Prayoonpokarach S. Comparison of potassium catalysts on zeolite sodium A and X in transesterification of palm oil and active species specification // Heliyon. 2024. V. 10. № 16. ID e35975. https://doi.org/10.1016/j.heliyon.2024.e35975
- Ishitani H., Furiya Y., Kobayashi S. Continuous-flow synthesis using a column reactor packed with heterogeneous catalysts: A convenient production of nitroolefins by using amino-functionalized silicagel // Bioorg. Med. Chem. 2017. V. 25. № 23. P. 6229–6232. https://doi.org/10.1016/j.bmc.2017.04.017
- Chistyakov A.V., Nikolaev S.A., Zharova P.A., Tsodikov M.V., Manenti F. Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst // Energy. 2019. V. 166. P. 569–576. https://doi.org/10.1016/j.energy.2018.10.071
- Dasireddy V.D., Štefančič N.S., Likozar B.Z. Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol // J. CO2 Util. 2018. V. 28. P. 189–199. https://doi.org/10.1016/j.jcou.2018.09.002
- Nikolaev S.A., Tsodikov M.V., Chistyakov A.V., Zharova P.A., Ezzgelenko D.I. The activity of mono- and bimetallic gold catalysts in the conversion of sub and supercritical ethanol to butanol // J. Catal. 2019. V. 369. P. 501–517. https://doi.org/10.1016/j. jcat.2018.11.017
- Phung T.K. Copper-based catalysts for ethanol dehydrogenation and dehydrogenative coupling into hydrogen, acetaldehyde and ethyl acetate // Int. J. Hydrogen Energy. 2022. V. 47. № 100. P. 42234–42249. https://doi.org/10.1016/j.ijhydene.2021.11.253
- Keyvanloo K., Horton J.B., Hecker W.C., Argyle M.D. Effects of preparation variables on an alumina-supported FeCuK Fischer–Tropsch catalyst // Catal. Sci. Technol. 2014. V. 4. № 12. P. 4289–4300. http://dx.doi.org/10.1039/C4CY00510D
- Golbad S., Khoshnoud P., Abu-Zahra N. Synthesis of 4A zeolite and characterization of calcium-and silver-exchanged forms // J. Miner. Mater. Charact. Eng. 2017. V. 5. № 5. P. 237‒251. http://dx.doi.org/10.4236/jmmce.2017.55020
- Upasen S., Sarunchot G., Srira-ngam N., Poo-arporn Y., Wattanachai P., Praserthdam P., Ngaotrakanwiwat P., Panpranot J., Soisuwan S. What if zeolite LTA4A and zeolite LTA5A used as Nickel catalyst supports for recycling carbon dioxide to green fuel methane // J. CO2 Util. 2022. V. 55. ID 101803. https://doi.org/10.1016/j.jcou.2021.101803
- Drönner J., Bijerch K., Hausoul P., Palkovits R., Eisenacher M. High-temperature-treated LTX zeolites as heterogeneous. Catalysts for the hock cleavage // Catalysts. 2023. V. 13. № 1. ID 202. https://doi.org/10.3390/catal13010202
- Горшунова В.П., Хаустова М.М. Исследование сорбции аммиака силикагелями разной пористости // Вестник Воронежского государственного технического университета. 2010. Т. 6. № 11. С. 19–21.
- Tanaka R., Ogino I., Mukai S.R. Synthesis of Mg–Al mixed oxides with markedly high surface areas from layered double hydroxides with organic sulfonates // ACS Omega. 2018. V. 3. № 12. P. 16916–16923. http://dx.doi.org/10.1021/acsomega.8b02557
- Wu Y., Li C., Bai J., Wang J. The fabrication of porous 4A-zeolite-supported Ag nanoparticles catalysts and its catalytic activity for styrene epoxidation // Results Phys. 2017. V. 7. P. 1616–1622. https://doi.org/10.1016/j.rinp.2017.04.035
- Ikeda A., Abe C., Matsuura W., Hasegawa Y. Development of methanol permselective FAU-type zeolite membranes and their permeation and separation performances // Membranes. 2021. V. 11. № 8. ID 627. https://doi.org/10.3390/membranes11080627
- Дубинин М.М. Физико-химические основы сорбционной техники. М.; Л.: Госхимтехиздат, 1932. 382 c.
- Fernández-Ropero A.J., Zawadzki B., Kowalewski E., Pieta I.S., Krawczyk M., Matus, K., Lisovytskiy D., Śrębowata A. Continuous 2-methyl-3-butyn-2-ol selective hydrogenation on Pd/γ-Al2O3 as a green pathway of vitamin A precursor synthesis // Catalysts. 2021. V. 11. № 4. ID 501. https://doi.org/10.3390/catal11040501
- Yan T., Bing W., Xu M., Li Y., Yang Y., Cui G., Yang L., Wei M. Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate // RSC Adv. 2018. V. 8. № 9. P. 4695–4702. https://doi.org/10.1039/C7RA13629C
- Moura P.A.S., Ferracine E.D.S., Rodríguez-Aguado E., Maia D.A.S., Melo D.C., Valencia S., Cardoso D., Rey F., Bastos-Neto M., Rodríguez-Castellon E., Azevedo D.C.S. Assessment of the stability of LTA zeolites under natural gas drying TSA conditions // Catal. Today. 2024. V. 427. ID 114410. https://doi.org/10.1016/j.cattod.2023.114410
- Gordina N.E., Borisova T.N., Klyagina K.S., Astrakhantseva I.A., Ilyin A.A., Rumyantsev R.N. Investigation of NH3 desorption kinetics on the LTA and SOD zeolite membranes // Membranes. 2022. V. 12. № 2. ID 147. https://doi.org/10.3390/membranes12020147
- Лидин Р.А., Молочко В.А., Андреева Л.Л. Химические свойства неорганических веществ. М.: ИНФРА-М, 2019. 480 c.
- Jabłońska M., Palkovits R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour — Recent trends and open challenges // Appl. Catal. B: Environ. 2016. V. 181. P. 332–351. https://doi.org/10.1016/j.apcatb.2015.07.017
- Hung C.M. Cordierite-supported Pt–Pd–Rh ternary composite for selective catalytic oxidation of ammonia // Powder Technol. 2010. V. 200. № 1–2. P. 78–83. https://doi.org/10.1016/j.powtec.2010.02.014
- Fabrizioli P., Bürgi T., Baiker A. Environmental catalysis on iron oxide–silica aerogels: Selective oxidation of NH3 and reduction of NO by NH3 // J. Catal. 2001. V. 206. № 1. P. 143–154. 10.1006/jcat.2001.3475' target='_blank'>https://doi: 10.1006/jcat.2001.3475
- Scheuer A., Votsmeier M., Schuler A., Gieshoff J., Drochner A., Vogel H. NH3-Slip catalysts: experiments versus mechanistic modelling // Top. Catal. 2009. V. 52. P. 1847–1851. http://dx.doi.org/10.1007/s11244-009-9351-9
- Chmielarz L., Jabłońska M., Strumiński A., Piwowarska Z., Węgrzyn A., Witkowski S., Michalik M. Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals // Appl. Catal. B: Environ. 2013. V. 130‒131. P. 152–162. https://doi.org/10.1016/j.apcatb.2012.11.004
- Liang C., Li X., Qu Z., Tade M., Liu S. The role of copper species on Cu/γ-Al2O3 catalysts for NH3–SCO reaction // Appl. Surf. Sci. 2012. V. 258. № 8. P. 3738–3743. https://doi.org/10.1016/j.apsusc.2011.12.017
- Lenihan S., Curtin T. The selective oxidation of ammonia using copper-based catalysts: The effects of water // Catal. Today. 2009. V. 145. № 1–2. P. 85–89. http://dx.doi.org/10.1016/j.cattod.2008.06.017
- Reed J.L. Hard and soft acids and bases: structure and process / J. Phys. Chem. A. 2012. V. 116. № 26. P. 7147–7153. https://doi.org/10.1021/jp301812j
Қосымша файлдар
