Toxicokinetics of nanoparticles under chronic inhalation exposure (literature review)
- Authors: Shabardina L.V.1, Bateneva V.A.1, Sutunkova M.P.1,2, Minigalieva I.A.1, Fedotova L.A.1,3
-
Affiliations:
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
- Ural State Medical University
- Centre for Strategic Planning, of the Federal medical and biological agency
- Issue: Vol 104, No 5 (2025)
- Pages: 674-679
- Section: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- Published: 15.12.2025
- URL: https://snv63.ru/0016-9900/article/view/689412
- DOI: https://doi.org/10.47470/0016-9900-2025-104-5-674-679
- EDN: https://elibrary.ru/gezijz
- ID: 689412
Cite item
Abstract
Keywords
About the authors
Lada V. Shabardina
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: lada.shabardina@mail.ru
Vlada A. Bateneva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Marina P. Sutunkova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; Ural State Medical University
Email: sutunkova@ymrc.ru
Ilzira A. Minigalieva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: ilzira@ymrc.ru
Lionella A. Fedotova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; Centre for Strategic Planning, of the Federal medical and biological agency
Email: LFedotova@cspmz.ru
References
- Khlebtsov N.G., Dykman L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010; 111(1): 1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012
- Zhang J.Z. Optical properties of metal oxide nanomaterials. In: Optical Properties and Spectroscopy of Nanomaterials. World Scientific; 2009: 181–203. https://doi.org/10.1142/9789812836663_0006
- Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019; 12(7): 908–31. https://doi.org/10.1016/j.arabjc.2017.05.011
- Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005; 113(7): 823–39. https://doi.org/10.1289/ehp.7339
- Lu X., Zhu T., Chen C., Liu Y. Right or left: the role of nanoparticles in pulmonary diseases. Int. J. Mol. Sci. 2014; 15(10): 17577–600. https://doi.org/10.3390/ijms151017577
- Hadrup N., Sørli J.B., Sharma A.K. Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review. Toxicology. 2022; 467: 153098. https://doi.org/10.1016/j.tox.2022.153098
- Johncy S.S., Dhanyakumar G., Samuel T.V., Ajay K.T., Bondade S.Y. Acute lung function response to dust in street sweepers. J. Clin. Diagn. Res. 2013; 7(10): 2126–9. https://doi.org/10.7860/JCDR/2013/5818.3449
- Srinivas A, Rao P.J., Selvam G., Murthy P.B., Reddy P.N. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol. Lett. 2011; 205(2): 105–15. https://doi.org/10.1016/j.toxlet.2011.05.1027
- Marczynski M., Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. Biophys. Rev. (Melville). 2021; 2(3): 031302. https://doi.org/10.1063/5.0054075
- Braakhuis H.M., Park M.V., Gosens I., De Jong W.H., Cassee F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 2014; 11: 18. https://doi.org/10.1186/1743-8977-11-18
- Ross M.H., Pawlina W. Histology: A Text and Atlas with Correlated Cell and Molecular Biology. Lippincott Williams & Wilkins; 2016.
- Горбачева Н.В., Кулич Н.В., Кузьмина Н.Д. Учет дисперсного состава вдыхаемой фракции и закономерностей аккумуляции аэрозоля в различных отделах дыхательного тракта при расчете доз внутреннего облучения. Вестник Университета гражданской защиты МЧС Беларуси. 2017; 1(3): 291–8. https://doi.org/10.33408/2519-237X.2017.1-3.291 https://elibrary.ru/zfovkt
- Wang L., Wang L., Ding W., Zhang F. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J. Nanosci. Nanotechnol. 2010; 10(12): 8617–24. https://doi.org/10.1166/jnn.2010.2483
- Liu Q., Zhang X., Xue J., Chai J., Qin L., Guan J., et al. Exploring the intrinsic micro-/nanoparticle size on their in vivo fate after lung delivery. J. Control. Release. 2022; 347: 435–48. https://doi.org/10.1016/j.jconrel.2022.05.006
- Schuster B.S., Suk J.S., Woodworth G.F., Hanes J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 2013; 34(13): 3439–46. https://doi.org/10.1016/j.biomaterials.2013.01.064
- Braakhuis H.M., Gosens I., Krystek P., Boere J.A.F., Cassee F.R., Fokkens P.H.B., et al. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part. Fibre Toxicol. 2014; 11: 49. https://doi.org/10.1186/s12989-014-0049-1
- Jachak A., Lai K.S., Hida K., Suk J.S., Markovic N., Biswal S., et al. Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology. 2012; 6(6): 614–22. https://doi.org/10.3109/17435390.2011.598244
- Fujihara J., Nishimoto N. Review of zinc oxide nanoparticles: Toxicokinetics, tissue distribution for various exposure routes, toxicological effects, toxicity mechanism in mammals, and an approach for toxicity reduction. Biol. Trace Elem. Res. 2023; 202(1): 9–23. https://doi.org/10.1007/s12011-023-03644-w
- Lieleg O., Vladescu I., Ribbeck K. Characterization of particle translocation through mucin hydrogels. Biophys. J. 2010; 98(9): 1782–9. https://doi.org/10.1016/j.bpj.2010.01.012
- Li L.D., Crouzier T., Sarkar A., Dunphy L., Han J., Ribbeck K. Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier. Biophys. J. 2013; 105(6): 1357–65. https://doi.org/10.1016/j.bpj.2013.07.050
- Xu Y.M., Tan H.W., Zheng W., Liang Z.L., Yu F.Y., Wu D.D., et al. Cadmium telluride quantum dot-exposed human bronchial epithelial cells: A further study of the cellular response by proteomics. Toxicol. Res. (Camb.). 2019; 8(6): 994–1001. https://doi.org/10.1039/c9tx00126c
- Geiser M., Casaulta M., Kupferschmid B., Schulz H., Semmler-Behnke M., Kreyling W. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am. J. Respir. Cell Mol. Biol. 2008; 38(3): 371–6. https://doi.org/10.1165/rcmb.2007-0138OC
- Geiser M., Rothen-Rutishauser B., Kapp N., Schürch S.N., Kreyling W., Schulz H., et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 2005; 113(11): 1555–60. https://doi.org/10.1289/ehp.8006
- Kim Y.H., Fazlollahi F., Kennedy I.M., Yacobi N.R., Hamm-Alvarez S.F., Borok Z., et al. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am. J. Respir. Crit. Care Med. 2010; 182(11): 1398–409. https://doi.org/10.1164/rccm.201002-0185OC
- Lipka J., Semmler-Behnke M., Sperling R.A., Wenk A., Takenaka S., Schleh C., et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010; 31(25): 6574–81. https://doi.org/10.1016/j.biomaterials.2010.05.009
- Shah P., Lalan M., Jani D. Toxicological aspects of carbon nanotubes, fullerenes and graphenes. Curr. Pharm. Des. 2021; 27(4): 556–64. https://doi.org/10.2174/1381612826666200916143741
- Vysloužil J., Kulich P., Zeman T., Vaculovič T., Tvrdoňová M., Mikuška P., et al. Subchronic continuous inhalation exposure to zinc oxide nanoparticles induces pulmonary cell response in mice. J. Trace Elem. Med. Biol. 2020; 61: 126511. https://doi.org/10.1016/j.jtemb.2020.126511
- Cai D., Gao W., Li Z., Zhang Y., Xiao L., Xiao Y. Current development of nano-drug delivery to target macrophages. Biomedicines. 2022; 10(5): 1203. https://doi.org/10.3390/biomedicines10051203
- Pauluhn J. Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology. 2011; 279(1–3): 176–88. https://doi.org/10.1016/j.tox.2010.10.009
- Molina R.M., Konduru N.V., Queiroz P.M., Figueroa B., Fu D., Ma-Hock L., et al. Fate of barium sulfate nanoparticles deposited in the lungs of rats. Sci. Rep. 2019; 9(1): 8163. https://doi.org/10.1038/s41598-019-44551-2
- Лаберко Е.Л., Богомильский М.Р. Современные представления о регуляции мукоцилиарного клиренса (обзор литературы). Вестник Российского государственного медицинского университета. 2015; (1): 60–4. https://elibrary.ru/ulxxrp
- Johncy S.S., Dhanyakumar G., Kanyakumari K., Samuel T.V. Chronic exposure to dust and lung function impairment: A study on female sweepers in India. Natl. J. Physiol. Pharm. Pharmacol. 2014; 4(1): 15–9. https://doi.org/10.5455/njppp.2014.4.140620131
- Jin J., Zhou K.K., Park K., Hu Y., Xu X., Zheng Z., et al. Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Invest. Ophthalmol. Vis. Sci. 2011; 52(9): 6230–7. https://doi.org/10.1167/iovs.10-6229
- Geiser M., Kreyling W.G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 2010; 7: 2. https://doi.org/10.1186/1743-8977-7-2
- Kirch J., Guenther M., Doshi N., Schaefer U.F., Schneider M., Mitragotri S., et al. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge – an ex vivo and in silico approach. J. Control. Release. 2012; 159(1): 128–34. https://doi.org/10.1016/j.jconrel.2011.12.015
- Blank F., Rothen-Rutishauser B., Gehr P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am. J. Respir. Cell Mol. Biol. 2007; 36(6): 669–77. https://doi.org/10.1165/rcmb.2006-0234OC
- Areecheewakul S., Adamcakova-Dodd A., Haque E., Jing X., Meyerholz D.K., O’Shaughnessy P.T., et al. Time course of pulmonary inflammation and trace element biodistribution during and after sub-acute inhalation exposure to copper oxide nanoparticles in a murine model. Part. Fibre Toxicol. 2022; 19(1): 40. https://doi.org/10.1186/s12989-022-00480-z
- Sacks D., Baxter B., Campbell B.C.V., Carpenter J.S., Cognard C., Dippel D., et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke. 2018; 13(6): 612–32. https://doi.org/10.1177/1747493018778713
- Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015; 33(9): 941–51. https://doi.org/10.1038/nbt.3330
- Du B., Jiang X., Das A., Zhou Q., Yu M., Jin R., et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017; 12(11): 1096–102. https://doi.org/10.1038/nnano.2017.170
- Choi H.S., Liu W., Misra P., Tanaka E., Zimmer J.P., Itty Ipe B., et al. Renal clearance of quantum dots. Nat. Biotechnol. 2007; 25(10): 1165–70. https://doi.org/10.1038/nbt1340
- Sun T., Zhang Y.S., Pang B., Hyun D.C., Yang M., Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 2014; 53(46): 12320–64. https://doi.org/10.1002/anie.201403036
- de Barros A.B., Tsourkas A., Saboury B., Cardoso V.N., Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2012; 2(1): 39. https://doi.org/10.1186/2191-219X-2-39
- Du B., Yu M., Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 2018; 3(10): 358–74. https://doi.org/10.1038/s41578-018-0038-3
- Schneider T., Mittag A., Westermann M., Glei M. Impact of pH changes on metal oxide nanoparticle behaviour during artificial digestion. Food Funct. 2021; 12(4): 1452–7. https://doi.org/10.1039/d0fo02842h
- Laloux L., Kastrati D., Cambier S., Gutleb A.C., Schneider Y.J. The food matrix and the gastrointestinal fluids alter the features of silver nanoparticles. Small. 2020; 16(21): e1907687. https://doi.org/10.1002/smll.201907687
- De Jong W.H., De Rijk E., Bonetto A., Wohlleben W., Stone V., Brunelli A., et al. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology. 2019; 13(1): 50–72. https://doi.org/10.1080/17435390.2018.1530390
- Sinnecker H., Krause T., Koelling S., Lautenschläger I., Frey A. The gut wall provides an effective barrier against nanoparticle uptake. Beilstein J. Nanotechnol. 2014; 5: 2092–101. https://doi.org/10.3762/bjnano.5.218
- Bredeck G., Kämpfer A.A.M., Sofranko A., Wahle T., Büttner V., Albrecht C., et al. Ingested engineered nanomaterials affect the expression of mucin genes – an in vitro – in vivo comparison. Nanomaterials (Basel). 2021; 11(10): 2621. https://doi.org/10.3390/nano11102621
- Bae S.H., Yu J., Go M.R., Kim H.J., Hwang Y.G., Choi S.J. Oral toxicity and intestinal transport mechanism of colloidal gold nanoparticle-treated red ginseng. Nanomaterials (Basel). 2016; 6(11): 208. https://doi.org/10.3390/nano6110208
Supplementary files
