Toxicokinetics of nanoparticles under chronic inhalation exposure (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The intensive use of nanomaterials and their unique physicochemical characteristics determine the relevance of establishing their effects on the body. Nanoparticles (NPs) are able to penetrate deep into the lungs causing pathophysiological response, but the patterns of their intrapulmonary biodistribution remain understudied. Our objective was to analyze recent publications describing the main routes of entry and pulmonary distribution of nanoparticles in mammals following inhalation exposure.We analyzed scientific papers published in peer-reviewed journals since 2000, indexed in the Scopus and Web of Science databases, and found using PubMed, Google Scholar, eLibrary, and CyberLeninka. Studies of toxicokinetics of particles larger than 100 nm were not eligible for inclusion in the review.We found unique physicochemical properties of nanoparticles and exposure duration to contribute the most to the development and course of pathological processes. Cells of the immune system, especially macrophages, play a major role in the distribution, clearance, and deposition of inhaled NPs. Elimination of nanoparticles usually occurs through the mucociliary escalator, either by phagocytosis or translocation to other organs and tissues.Conclusion. A wide range of adverse effects of nanoparticles on living systems necessitates further research concerning the patterns of their toxicokinetics and toxicodynamics.Contribution: Shabardina L.V. – data collection and processing, draft manuscript preparation; Bateneva V.A. – data collection and processing; Sutunkova M.P., Minigalieva I.A. – study conception and design, editing; Fedotova L.A. – editing. All authors are responsible for the integrity of all parts of the manuscript and approval of its final version.Conflict of interest. The authors declare no conflict of interest.Funding. The study had no sponsorship.Received: March 18, 2025 / Accepted: April 29, 2025 / Published: June 27, 2025

About the authors

Lada V. Shabardina

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: lada.shabardina@mail.ru

Vlada A. Bateneva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Marina P. Sutunkova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; Ural State Medical University

Email: sutunkova@ymrc.ru

Ilzira A. Minigalieva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: ilzira@ymrc.ru

Lionella A. Fedotova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; Centre for Strategic Planning, of the Federal medical and biological agency

Email: LFedotova@cspmz.ru

References

  1. Khlebtsov N.G., Dykman L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010; 111(1): 1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012
  2. Zhang J.Z. Optical properties of metal oxide nanomaterials. In: Optical Properties and Spectroscopy of Nanomaterials. World Scientific; 2009: 181–203. https://doi.org/10.1142/9789812836663_0006
  3. Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019; 12(7): 908–31. https://doi.org/10.1016/j.arabjc.2017.05.011
  4. Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005; 113(7): 823–39. https://doi.org/10.1289/ehp.7339
  5. Lu X., Zhu T., Chen C., Liu Y. Right or left: the role of nanoparticles in pulmonary diseases. Int. J. Mol. Sci. 2014; 15(10): 17577–600. https://doi.org/10.3390/ijms151017577
  6. Hadrup N., Sørli J.B., Sharma A.K. Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review. Toxicology. 2022; 467: 153098. https://doi.org/10.1016/j.tox.2022.153098
  7. Johncy S.S., Dhanyakumar G., Samuel T.V., Ajay K.T., Bondade S.Y. Acute lung function response to dust in street sweepers. J. Clin. Diagn. Res. 2013; 7(10): 2126–9. https://doi.org/10.7860/JCDR/2013/5818.3449
  8. Srinivas A, Rao P.J., Selvam G., Murthy P.B., Reddy P.N. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol. Lett. 2011; 205(2): 105–15. https://doi.org/10.1016/j.toxlet.2011.05.1027
  9. Marczynski M., Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. Biophys. Rev. (Melville). 2021; 2(3): 031302. https://doi.org/10.1063/5.0054075
  10. Braakhuis H.M., Park M.V., Gosens I., De Jong W.H., Cassee F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 2014; 11: 18. https://doi.org/10.1186/1743-8977-11-18
  11. Ross M.H., Pawlina W. Histology: A Text and Atlas with Correlated Cell and Molecular Biology. Lippincott Williams & Wilkins; 2016.
  12. Горбачева Н.В., Кулич Н.В., Кузьмина Н.Д. Учет дисперсного состава вдыхаемой фракции и закономерностей аккумуляции аэрозоля в различных отделах дыхательного тракта при расчете доз внутреннего облучения. Вестник Университета гражданской защиты МЧС Беларуси. 2017; 1(3): 291–8. https://doi.org/10.33408/2519-237X.2017.1-3.291 https://elibrary.ru/zfovkt
  13. Wang L., Wang L., Ding W., Zhang F. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J. Nanosci. Nanotechnol. 2010; 10(12): 8617–24. https://doi.org/10.1166/jnn.2010.2483
  14. Liu Q., Zhang X., Xue J., Chai J., Qin L., Guan J., et al. Exploring the intrinsic micro-/nanoparticle size on their in vivo fate after lung delivery. J. Control. Release. 2022; 347: 435–48. https://doi.org/10.1016/j.jconrel.2022.05.006
  15. Schuster B.S., Suk J.S., Woodworth G.F., Hanes J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 2013; 34(13): 3439–46. https://doi.org/10.1016/j.biomaterials.2013.01.064
  16. Braakhuis H.M., Gosens I., Krystek P., Boere J.A.F., Cassee F.R., Fokkens P.H.B., et al. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part. Fibre Toxicol. 2014; 11: 49. https://doi.org/10.1186/s12989-014-0049-1
  17. Jachak A., Lai K.S., Hida K., Suk J.S., Markovic N., Biswal S., et al. Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology. 2012; 6(6): 614–22. https://doi.org/10.3109/17435390.2011.598244
  18. Fujihara J., Nishimoto N. Review of zinc oxide nanoparticles: Toxicokinetics, tissue distribution for various exposure routes, toxicological effects, toxicity mechanism in mammals, and an approach for toxicity reduction. Biol. Trace Elem. Res. 2023; 202(1): 9–23. https://doi.org/10.1007/s12011-023-03644-w
  19. Lieleg O., Vladescu I., Ribbeck K. Characterization of particle translocation through mucin hydrogels. Biophys. J. 2010; 98(9): 1782–9. https://doi.org/10.1016/j.bpj.2010.01.012
  20. Li L.D., Crouzier T., Sarkar A., Dunphy L., Han J., Ribbeck K. Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier. Biophys. J. 2013; 105(6): 1357–65. https://doi.org/10.1016/j.bpj.2013.07.050
  21. Xu Y.M., Tan H.W., Zheng W., Liang Z.L., Yu F.Y., Wu D.D., et al. Cadmium telluride quantum dot-exposed human bronchial epithelial cells: A further study of the cellular response by proteomics. Toxicol. Res. (Camb.). 2019; 8(6): 994–1001. https://doi.org/10.1039/c9tx00126c
  22. Geiser M., Casaulta M., Kupferschmid B., Schulz H., Semmler-Behnke M., Kreyling W. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am. J. Respir. Cell Mol. Biol. 2008; 38(3): 371–6. https://doi.org/10.1165/rcmb.2007-0138OC
  23. Geiser M., Rothen-Rutishauser B., Kapp N., Schürch S.N., Kreyling W., Schulz H., et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 2005; 113(11): 1555–60. https://doi.org/10.1289/ehp.8006
  24. Kim Y.H., Fazlollahi F., Kennedy I.M., Yacobi N.R., Hamm-Alvarez S.F., Borok Z., et al. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am. J. Respir. Crit. Care Med. 2010; 182(11): 1398–409. https://doi.org/10.1164/rccm.201002-0185OC
  25. Lipka J., Semmler-Behnke M., Sperling R.A., Wenk A., Takenaka S., Schleh C., et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010; 31(25): 6574–81. https://doi.org/10.1016/j.biomaterials.2010.05.009
  26. Shah P., Lalan M., Jani D. Toxicological aspects of carbon nanotubes, fullerenes and graphenes. Curr. Pharm. Des. 2021; 27(4): 556–64. https://doi.org/10.2174/1381612826666200916143741
  27. Vysloužil J., Kulich P., Zeman T., Vaculovič T., Tvrdoňová M., Mikuška P., et al. Subchronic continuous inhalation exposure to zinc oxide nanoparticles induces pulmonary cell response in mice. J. Trace Elem. Med. Biol. 2020; 61: 126511. https://doi.org/10.1016/j.jtemb.2020.126511
  28. Cai D., Gao W., Li Z., Zhang Y., Xiao L., Xiao Y. Current development of nano-drug delivery to target macrophages. Biomedicines. 2022; 10(5): 1203. https://doi.org/10.3390/biomedicines10051203
  29. Pauluhn J. Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology. 2011; 279(1–3): 176–88. https://doi.org/10.1016/j.tox.2010.10.009
  30. Molina R.M., Konduru N.V., Queiroz P.M., Figueroa B., Fu D., Ma-Hock L., et al. Fate of barium sulfate nanoparticles deposited in the lungs of rats. Sci. Rep. 2019; 9(1): 8163. https://doi.org/10.1038/s41598-019-44551-2
  31. Лаберко Е.Л., Богомильский М.Р. Современные представления о регуляции мукоцилиарного клиренса (обзор литературы). Вестник Российского государственного медицинского университета. 2015; (1): 60–4. https://elibrary.ru/ulxxrp
  32. Johncy S.S., Dhanyakumar G., Kanyakumari K., Samuel T.V. Chronic exposure to dust and lung function impairment: A study on female sweepers in India. Natl. J. Physiol. Pharm. Pharmacol. 2014; 4(1): 15–9. https://doi.org/10.5455/njppp.2014.4.140620131
  33. Jin J., Zhou K.K., Park K., Hu Y., Xu X., Zheng Z., et al. Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Invest. Ophthalmol. Vis. Sci. 2011; 52(9): 6230–7. https://doi.org/10.1167/iovs.10-6229
  34. Geiser M., Kreyling W.G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 2010; 7: 2. https://doi.org/10.1186/1743-8977-7-2
  35. Kirch J., Guenther M., Doshi N., Schaefer U.F., Schneider M., Mitragotri S., et al. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge – an ex vivo and in silico approach. J. Control. Release. 2012; 159(1): 128–34. https://doi.org/10.1016/j.jconrel.2011.12.015
  36. Blank F., Rothen-Rutishauser B., Gehr P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am. J. Respir. Cell Mol. Biol. 2007; 36(6): 669–77. https://doi.org/10.1165/rcmb.2006-0234OC
  37. Areecheewakul S., Adamcakova-Dodd A., Haque E., Jing X., Meyerholz D.K., O’Shaughnessy P.T., et al. Time course of pulmonary inflammation and trace element biodistribution during and after sub-acute inhalation exposure to copper oxide nanoparticles in a murine model. Part. Fibre Toxicol. 2022; 19(1): 40. https://doi.org/10.1186/s12989-022-00480-z
  38. Sacks D., Baxter B., Campbell B.C.V., Carpenter J.S., Cognard C., Dippel D., et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke. 2018; 13(6): 612–32. https://doi.org/10.1177/1747493018778713
  39. Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015; 33(9): 941–51. https://doi.org/10.1038/nbt.3330
  40. Du B., Jiang X., Das A., Zhou Q., Yu M., Jin R., et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017; 12(11): 1096–102. https://doi.org/10.1038/nnano.2017.170
  41. Choi H.S., Liu W., Misra P., Tanaka E., Zimmer J.P., Itty Ipe B., et al. Renal clearance of quantum dots. Nat. Biotechnol. 2007; 25(10): 1165–70. https://doi.org/10.1038/nbt1340
  42. Sun T., Zhang Y.S., Pang B., Hyun D.C., Yang M., Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 2014; 53(46): 12320–64. https://doi.org/10.1002/anie.201403036
  43. de Barros A.B., Tsourkas A., Saboury B., Cardoso V.N., Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2012; 2(1): 39. https://doi.org/10.1186/2191-219X-2-39
  44. Du B., Yu M., Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 2018; 3(10): 358–74. https://doi.org/10.1038/s41578-018-0038-3
  45. Schneider T., Mittag A., Westermann M., Glei M. Impact of pH changes on metal oxide nanoparticle behaviour during artificial digestion. Food Funct. 2021; 12(4): 1452–7. https://doi.org/10.1039/d0fo02842h
  46. Laloux L., Kastrati D., Cambier S., Gutleb A.C., Schneider Y.J. The food matrix and the gastrointestinal fluids alter the features of silver nanoparticles. Small. 2020; 16(21): e1907687. https://doi.org/10.1002/smll.201907687
  47. De Jong W.H., De Rijk E., Bonetto A., Wohlleben W., Stone V., Brunelli A., et al. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology. 2019; 13(1): 50–72. https://doi.org/10.1080/17435390.2018.1530390
  48. Sinnecker H., Krause T., Koelling S., Lautenschläger I., Frey A. The gut wall provides an effective barrier against nanoparticle uptake. Beilstein J. Nanotechnol. 2014; 5: 2092–101. https://doi.org/10.3762/bjnano.5.218
  49. Bredeck G., Kämpfer A.A.M., Sofranko A., Wahle T., Büttner V., Albrecht C., et al. Ingested engineered nanomaterials affect the expression of mucin genes – an in vitro – in vivo comparison. Nanomaterials (Basel). 2021; 11(10): 2621. https://doi.org/10.3390/nano11102621
  50. Bae S.H., Yu J., Go M.R., Kim H.J., Hwang Y.G., Choi S.J. Oral toxicity and intestinal transport mechanism of colloidal gold nanoparticle-treated red ginseng. Nanomaterials (Basel). 2016; 6(11): 208. https://doi.org/10.3390/nano6110208

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.