Variability of the promoter-operator region of Bacillus cereus hlyii gene impacts on its transcriptional activity level

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The promoter-operator region of the Bacillus cereus hlyII gene includes an elongated operator region with mirror symmetry, recognizable with the main specific transcriptional regulator HlyIIR. In addition, regions for the global transcription regulators Fur, OhrR, and ResD, are located in the region of the hlyII gene operator. The latter is a transcriptional regulator of the redox-sensitive ResDE signal transduction pathway. Bacillus cereus sensu lato strains were found with a disturbance in the proximal part of the area recognized by HlyIIR and ResD. The essential role of these regions in the expression of the hlyII gene has been demonstrated. Natural strains of Bacillus cereus with deletions in the proximal region of the HlyIIR operator of the hlyII gene have a significantly reduced expression level of hlyII were identified. Disturbances in HlyIIR operator reduce the expression of hlyII several tens of times. The presence of an intact recognition site for ResD reduces the expression of this gene several times under aerobic conditions. These results allow us to determine the influence of structural variability in the promoter-operator region of Bacillus cereus hlyII genes on its transcriptional activity.

Full Text

Restricted Access

About the authors

A. M. Shadrin

FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences

Email: solonin.a.s@yandex.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Moscow oblast, Pushchino, 142290

E. V. Shapyrina

FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences

Email: solonin.a.s@yandex.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Moscow oblast, Pushchino, 142290

A. S. Nagel

FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences

Email: solonin.a.s@yandex.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Moscow oblast, Pushchino, 142290

A. V. Siunov

FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences

Email: solonin.a.s@yandex.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Moscow oblast, Pushchino, 142290

Zh. I. Andreeva-Kovalevskaya

FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences

Email: solonin.a.s@yandex.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Moscow oblast, Pushchino, 142290

V. I. Salyamov

FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences

Email: solonin.a.s@yandex.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Moscow oblast, Pushchino, 142290

A. S. Solonin

FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences

Author for correspondence.
Email: solonin.a.s@yandex.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Moscow oblast, Pushchino, 142290

References

  1. Bottone E.J. Bacillus cereus, a volatile human pathogen // Clin. Microbiol. Rev. 2010. V. 23. № 2. P. 382–398. https://doi.org/10.1128/CMR.00073-09
  2. Hall-Stoodley L., Stoodley P. Evolving concepts in biofilm infections // Cell Microbiol. 2009. V. 11. № 7. P. 1034–1043. https://doi.org/10.1111/j.1462-5822.2009.01323.x
  3. Hsueh Y.-H., Somers E.B., Lereclus D. et al. Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator // Appl. Environ. Microbiol. 2006. V. 72. № 7. P. 5089–5092. https://doi.org/10.1128/AEM.00573-06
  4. John S., Neary J., Lee C.H. Invasive Bacillus cereus infection in a renal transplant patient: A case report and review // Can. J. Infect. Dis. Med. Microbiol. 2012. V. 23. № 4. P. e109–110. https://doi.org/10.1155/2012/461020
  5. Ramarao N., Lereclus D. The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages // Cell Microbiol. 2005. V. 7. № 9. P. 1357–1364. https://doi.org/10.1111/j.1462-5822.2005.00562.x
  6. Baida G., Budarina Z.I., Kuzmin N.P. et al. Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus // FEMS Microbiol. Lett. 1999. V. 180. № 1. P. 7–14. https://doi.org/10.1111/j.1574-6968.1999.tb08771.x
  7. Sineva E.V., Andreeva-Kovalevskaya Z.I., Shadrin A.M. et al. Expression of Bacillus cereus hemolysin II in Bacillus subtilis renders the bacteria pathogenic for the crustacean Daphnia magna // FEMS Microbiol. Lett. 2009. V. 299. № 1. P. 110–119. https://doi.org/10.1111/j.1574-6968.2009.01742.x
  8. Kataev A.A., Andreeva-Kovalevskaya Z.I., Solonin A.S. et al. Bacillus cereus can attack the cell membranes of the alga Chara corallina by means of HlyII // Biochim. Biophys. Acta. 2012. V. 1818. № 5. P. 1235–1241. https://doi.org/10.1016/j.bbamem.2012.01.010
  9. Cadot C., Tran S.-L., Vignaud M.-L. et al. InhA1, NprA, and HlyII as candidates for markers to differentiate pathogenic from nonpathogenic Bacillus cereus strains // J. Clin. Microbiol. 2010. V. 48. № 4. P. 1358–1365. https://doi.org/10.1128/JCM.02123-09
  10. Rodikova E.A., Kovalevskiy O.V., Mayorov S.G. et al. Two HlyIIR dimers bind to a long perfect inverted repeat in the operator of the hemolysin II gene from Bacillus cereus // FEBS Lett. 2007. V. 581. № 6. P. 1190–1196. https://doi.org/10.1016/j.febslet.2007.02.035
  11. Budarina Z.I., Nikitin D.V., Zenkin N. et al. A new Bacillus cereus DNA-binding protein, HlyIIR, negatively regulates expression of B. cereus haemolysin II // Microbiology. (Reading). 2004. V. 150. № Pt 11. P. 3691–3701. https://doi.org/10.1099/mic.0.27142-0
  12. Kovalevskiy O.V., Lebedev A.A., Surin A.K. et al. Crystal structure of Bacillus cereus HlyIIR, a transcriptional regulator of the gene for pore-forming toxin hemolysin II // J. Mol. Biol. 2007. V. 365. № 3. P. 825–834. https://doi.org/10.1016/j.jmb.2006.10.074
  13. Ramarao N., Sanchis V. The pore-forming haemolysins of bacillus cereus: A review // Toxins (Basel). 2013. V. 5. № 6. P. 1119–1139. https://doi.org/10.3390/toxins5061119
  14. Gupta L.K., Molla J., Prabhu A.A. Story of pore-forming proteins from deadly disease-causing agents to modern applications with evolutionary significance // Mol. Biotechnol. 2024. V. 66. № 6. P. 1327–1356. https://doi.org/10.1007/s12033-023-00776-1
  15. Lopez Chiloeches M., Bergonzini A., Frisan T. Bacterial toxins are a never-ending source of surprises: From natural born killers to negotiators // Toxins (Basel). 2021. V. 13. № 6. https://doi.org/10.3390/toxins13060426
  16. Helgason E., Caugant D.A., Olsen I. et al. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections // J. Clin. Microbiol. 2000. V. 38. № 4. P. 1615–1622. https://doi.org/10.1128/JCM.38.4.1615-1622.2000
  17. Baichoo N., Helmann J.D. Recognition of DNA by Fur: A reinterpretation of the Fur box consensus sequence // J. Bacteriol. 2002. V. 184. № 21. P. 5826–5832. https://doi.org/10.1128/JB.184.21.5826-5832.2002
  18. Sineva E., Shadrin A., Rodikova E.A. et al. Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur // J. Bacteriol. 2012. V. 194. № 13. P. 3327–3335. https://doi.org/10.1128/JB.00199-12
  19. Rosenfeld E., Duport C., Zigha A. et al. Characterization of aerobic and anaerobic vegetative growth of the food-borne pathogen Bacillus cereus F4430/73 strain // Can. J. Microbiol. 2005. V. 51. № 2. P. 149–158. https://doi.org/10.1139/w04-132
  20. Jacob H., Geng H., Shetty D. et al. Distinct interaction mechanism of RNA polymerase and ResD at proximal and distal subsites for transcription activation of nitrite reductase in Bacillus subtilis // J. Bacteriol. 2022. V. 204. № 2. https://doi.org/10.1128/JB.00432-21
  21. Härtig E., Geng H., Hartmann A. et al. Bacillus subtilis ResD induces expression of the potential regulatory genes yclJK upon oxygen limitation // J. Bacteriol. 2004. V. 186. № 19. P. 6477–6484. https://doi.org/10.1128/JB.186.19.6477-6484.2004
  22. Esbelin J., Jouanneau Y., Duport C. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR // BMC Microbiology. 2012. V. 12. № 1. https://doi.org/10.1186/1471-2180-12-125
  23. Sun G., Sharkova E., Chesnut R. et al. Regulators of aerobic and anaerobic respiration in Bacillus subtilis // J. Bacteriol. 1996. V. 178. № 5. P. 1374–1385. https://doi.org/10.1128/jb.178.5.1374-1385.1996
  24. Nakano M.M., Zhu Y., Lacelle M. et al. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis // Mol. Microbiol. 2000. V. 37. № 5. P. 1198–1207. https://doi.org/10.1046/j.1365-2958.2000.02075.x
  25. Sievers F., Wilm A., Dineen D. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega // Mol. Syst. Biol. 2011. V. 7. P. 539. https://doi.org/10.1038/msb.2011.75
  26. Geng H., Zhu Y., Mullen K. et al. Characterization of ResDE-dependent fnr transcription in Bacillus subtilis // J. Bacteriol. 2007. V. 189. № 5. P. 1745–1755. https://doi.org/10.1128/JB.01502-06
  27. Mishra A., Hughes A.C., Amon J.D. et al. SwrA extends DegU over an UP element to activate flagellar gene expression in Bacillus subtilis // bioRxiv. 2023. https://doi.org/10.1101/2023.08.04.552067

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of the amino acid sequences of ResD and the binding sites of Bacillus subtilis and Bacillus cereus. a – the result of alignment of the amino acid sequences of ResD using the ClustalΩ program. b – comparison of the promoter-operator regions of hlyII in Bacillus cereus strains B-771 with a disruption of the ResD operator and B-370 with a deletion of the HlyIIR operator region from –196 to –228 nucleotides.

Download (363KB)

Copyright (c) 2025 Russian Academy of Sciences