КОМБИНИРОВАННАЯ ФОТОДИНАМИЧЕСКАЯ И ПЛАЗМОННАЯ ФОТОТЕРМИЧЕСКАЯ ТЕРАПИЯ В МОДЕЛИ КРЫС С ПЕРЕВИТЫМИ ОПУХОЛЯМИ
- Авторы: Бучарская А.Б1,2,3, Наволокин Н.А1,2, Мудрак Д.А1, Маслякова Г.Н1,2, Хлебцов Б.Н4, Хлебцов Н.Г2,4, Генин В.Д2,3, Генина Э.А2,3, Тучин В.В2,3
-
Учреждения:
- Саратовский государственный медицинский университет им. В.И. Разумовского Минздрава России
- Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского
- Национальный исследовательский Томский государственный университет
- Институт биохимии и физиологии растений и микроорганизмов, ФИЦ «Саратовский научный центр РАН»
- Выпуск: Том 69, № 3 (2024)
- Страницы: 656-663
- Раздел: Медицинская биофизика
- URL: https://snv63.ru/0006-3029/article/view/676172
- DOI: https://doi.org/10.31857/S0006302924030205
- EDN: https://elibrary.ru/ODUSTN
- ID: 676172
Цитировать
Аннотация
Об авторах
А. Б Бучарская
Саратовский государственный медицинский университет им. В.И. Разумовского Минздрава России; Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского; Национальный исследовательский Томский государственный университет
Email: allaalla_72@mail.ru
Саратов, Россия; Саратов, Россия; Томск, Россия
Н. А Наволокин
Саратовский государственный медицинский университет им. В.И. Разумовского Минздрава России; Саратовский национальный исследовательский государственный университет им. Н.Г. ЧернышевскогоСаратов, Россия; Саратов, Россия
Д. А Мудрак
Саратовский государственный медицинский университет им. В.И. Разумовского Минздрава РоссииСаратов, Россия
Г. Н Маслякова
Саратовский государственный медицинский университет им. В.И. Разумовского Минздрава России; Саратовский национальный исследовательский государственный университет им. Н.Г. ЧернышевскогоСаратов, Россия; Саратов, Россия
Б. Н Хлебцов
Институт биохимии и физиологии растений и микроорганизмов, ФИЦ «Саратовский научный центр РАН»Саратов, Россия
Н. Г Хлебцов
Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского; Институт биохимии и физиологии растений и микроорганизмов, ФИЦ «Саратовский научный центр РАН»Саратов, Россия; Саратов, Россия
В. Д Генин
Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского; Национальный исследовательский Томский государственный университетСаратов, Россия; Томск, Россия
Э. А Генина
Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского; Национальный исследовательский Томский государственный университетСаратов, Россия; Томск, Россия
В. В Тучин
Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского; Национальный исследовательский Томский государственный университетСаратов, Россия; Томск, Россия
Список литературы
- Cancer today (Globocan 2020) [Electronic resource]. 2020. Mode of access: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf. Date of access: 05.01.2024.
- Huang X., Jain P. K., El-Sayed I. H., and ElSayedM. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 23 (3), 217 (2008). doi: 10.1007/s10103-007-0470-x
- Kim M., Lee J.-H., and Nam J.-M. Plasmonic Photothermal Nanoparticles for Biomedical Applications. Adv. Sci., 6, 19004712019 (2019). doi: 10.1002/advs.201900471
- Vines J. B., Yoon J.-H., Ryu N.-E., Lim D.-J., and Park H. Gold Nanoparticles for Photothermal Cancer Therapy. Front. Chem., 7, 1 (2019). doi: 10.3389/fchem.2019.00167
- Maeda H., Wu J., Sawa T., Matsumura Y., and Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release, 65 (1–2), 271 (2000). doi: 10.1016/s01683659(99)00248-5
- Park J., Choi Y., Chang H., Um W., Ryu J. H., and Kwon I. C. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics, 9 (26), 8073 (2019). doi: 10.7150/thno.37198
- Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. Pers. Med. 11, 771 (2021). doi: 10.3390/jpm11080771
- Akhter F., Manrique-Bedoya S., Moreau C., Smith A. L., Yusheng F., Mayer K. M., and Hood R. L. Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo. Pharmaceutics, 13 (12), 2133 (2021). doi: 10.3390/pharmaceutics13122133
- Bucharskaya A. B., Khlebtsov N. G., Khlebtsov B. N., Maslyakova G. N., Navolokin N. A., Genin V. D., Genina E. A., and Tuchin V. V. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. Materials, 15 (4), 1606 (2022). doi: 10.3390/ma15041606
- Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., and Kulbacka J. Photodynamic therapy mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy, 106, 1098 (2018). doi: 10.1016/j.biopha.2018.07.049
- Gurcan G., Emre G. M., and Seylan A. Photodynamic Therapy—Current Limitations and Novel Approaches. Front. Chem., 9, 691697 (2021). doi: 10.3389/fchem.2021.691697
- Younis M. R., Wang C., An R., Wang S., Younis M. A., Li Z. Q., Wang Y., Ihsan A., Ye D., and Xia X. H. Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. ACS Nano, 13 (2), 2544 (2019). doi: 10.1021/acsnano.8b09552
- Kong C. and Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int. J. Nanomedicine, 17, 6427 (2022). doi: 10.2147/IJN.S388996
- Jang J. Y., Park C. H., Tung Kim I.-H., and Choi Y. Gold Nanorod−Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo. ACS Nano, 5 (2), 1086 (2011). doi: 10.1021/nn102722z
- Wang S., Huang P., Nie L., Xing R., Liu D., Wang Z., Lin J., Chen S., Niu G., Lu G., and Chen X. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater., 1 (2), 90 (2013). doi: 10.1002/adma.201204623
- Terentyuk G., Panfilova E., Khanadeev V., Chumakov D., Genina E., Bashkatov A., Tuchin V., Bucharskaya A., Maslyakova G., Khlebtsov N., and Khlebtsov B. Gold nanorods with a hematoporphyrinloaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res., 7, 325 (2014). doi: 10.1007/s12274-013-0398-3
- Zhang S., Lv H., Zhao J., Cheng M., and Sun S. Synthesis of porphyrin-conjugated silica-coated Au nanorods for synergistic photothermal therapy and photodynamic therapy of tumor. Nanotechnology, 30 (26), 265102 (2019). doi: 10.1088/1361-6528/ab0bd1
- Khlebtsov B. N., Khanadeev V. A., and Khlebtsov N. G. Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods. J. Phys. Chem. C, 112, 12760–12768 (2008).
- Khlebtsov B. N., Tuchina E. S., Khanadeev V. A., Panfilova E.V., Petrov P. O., Tuchin V. V., and Khlebtsov N. G. Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin. J. Biophoton., 6, 338–351 (2013). doi: 10.1002/jbio.201200079
- Генина Э. А., Башкатов А. Н., Кочубей В. И., Тучин В. В. и Альтшулер Г. Б. In vivo исследование взаимодействия индоцианина зеленого с эпидермисом человека. Письма в ЖТФ, 27 (14), 63 (2001).
- Gong B., Shen Y., Li H. Li X., Huan X., Zhou J., ChenY., Wu J., and Li W. Thermo-responsive polymer encapsulated gold nanorods for single continuous wave laser-induced photodynamic/photothermal tumour therapy. J. Nanobiotechnol., 19, 41 (2021). doi: 10.1186/s12951-020-00754-8
- Bucharskaya A. B., Maslyakova G. N., Chekhonatskaya M. L., Terentyuk G. S., Navolokin N. A., Khlebtsov B. N., Khlebtsov N. G., Bashkatov A. N., Genina E. A., and Tuchin V. V. Plasmonic Photothermal Therapy: Approaches to Advanced Strategy. Lasers Surg. Med., 50, 1025–1033 (2018). doi: 10.1002/lsm.23001
Дополнительные файлы
