Influence of ABA-metabolizing bacteria on the growth and aba content in wheat plants and soil in dense planting
- Authors: Martynenko E.V.1, Kuzmina L.Y1, Gaffarova E.R.1, Ryabova А.S.1, Kudoyarova G.R.1, Vysotskaya L.B.1
-
Affiliations:
- Ufa Institute of Biology–Ufa Federal Research Center of the RAS
- Issue: No 12 (2024)
- Pages: 64-71
- Section: Experimental Articles. Agroecology
- URL: https://snv63.ru/0002-1881/article/view/647253
- DOI: https://doi.org/10.31857/S0002188124120096
- EDN: https://elibrary.ru/vursch
- ID: 647253
Cite item
Abstract
The influence of abscisic acid (ABA)-metabolizing bacterial strains of the genera Pseudomonas and Arthrobacter on the hormone content in the shoots and roots of wheat plants, as well as in a sandy substrate during dense planting, has been studied. The ability of bacteria to reduce the ABA content in the growing environments and in plants, albeit to varying degrees, was discovered already 10 days after inoculation. At the same time, most of the studied strains were characterized by decrease of ABA in shoots, and suppression of ABA in the roots was observed less frequently. The simultaneous decrease in the hormone in the shoots and in the sandy substrate, which manifested itself under the influence of strains P. plecoglossicida 2.4-D, P. frederiksbergensis IB Ta10m, P. veronii IB K11-1, was accompanied by a maximum increase of wheat weight plants as compared to non-inoculated plants. The studied bacteria to varying degrees stimulated the accumulation of shoot and root mass, as well as leaf area, which could probably be associated with their different ability to synthesize other hormones, such as IAA, and/or influence the hormonal system of the plant itself. The prospects of using ABA-destructor bacteria for the development of agricultural biological products that can mitigate the negative effects of thickened crops and increase resistance to other abiotic factors are discussed.
Full Text

About the authors
E. V. Martynenko
Ufa Institute of Biology–Ufa Federal Research Center of the RAS
Email: vysotskaya@anrb.ru
Russian Federation, prosp. Oktyabrya 71, Ufa 450054
L. Y Kuzmina
Ufa Institute of Biology–Ufa Federal Research Center of the RAS
Email: vysotskaya@anrb.ru
Russian Federation, prosp. Oktyabrya 71, Ufa 450054
E. R. Gaffarova
Ufa Institute of Biology–Ufa Federal Research Center of the RAS
Email: vysotskaya@anrb.ru
Russian Federation, prosp. Oktyabrya 71, Ufa 450054
А. S. Ryabova
Ufa Institute of Biology–Ufa Federal Research Center of the RAS
Email: vysotskaya@anrb.ru
Russian Federation, prosp. Oktyabrya 71, Ufa 450054
G. R. Kudoyarova
Ufa Institute of Biology–Ufa Federal Research Center of the RAS
Email: vysotskaya@anrb.ru
Russian Federation, prosp. Oktyabrya 71, Ufa 450054
L. B. Vysotskaya
Ufa Institute of Biology–Ufa Federal Research Center of the RAS
Author for correspondence.
Email: vysotskaya@anrb.ru
Russian Federation, prosp. Oktyabrya 71, Ufa 450054
References
- Fang X.Li.Y., Nie J., Wang C., Huang K., Zhang K.Y., Zhang Y., She H., Xi L., Ruan R., Yuan X., Yi Z. Effects of nitrogen fertilizer and planting density on the leaf photo-synthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.) // Field Crops Res. 2018. № 219. P. 160–168. https://doi.org/10.1016/j.fcr.2018.02.001
- Jiang X., Tong L., Kang S., Li F., Li D., Qin Y., Shi R., Li J. Planting density affected biomass and grain yield of maize for seed production in an arid region of Northwest China // J. Arid Land. 2018. № 10. P. 292–303. https://doi.org/10.1007/s40333-018-0098-7
- Zhang Y., Xu Z., Jun L., Wang R. Optimum planting density improves resource use efficiency and yield stability of rainfed maize in semiarid climate // Front. Plant Sci. 2021. № 12. P. 752606. https://doi.org/10.3389/fpls.2021.752606
- Romero H., Guataquira S., Forero D. Light interception, photosynthetic performance, and yield of oil palm interspecific OxG hybrid (Elaeis oleifera (Kunth) Cortés × Elaeis guineensis Jacq.) under three planting densities // Plants. 2022. № 11. P. 1166. https://doi.org/10.3390/plants11091166
- Ballaré C., Pierik R. The shade-avoidance syndrome: Multiple signals and ecological consequences // Plant Cell Environ. 2017. V. 40. P. 2530–2543. https://doi.org/10.1111/pce.12914
- Tang Y.J., Liesche J. The molecular mechanism of shade avoidance in crops – How data from Arabidopsis can help to identify targets for increasing yield and biomass production // J. Integr. Agric. 2017. V. 16. P. 1244–1255. https://doi.org/10.1016/S2095-3119(16)61434-X
- Cagnola J.I., Ploschuk E., Benech-Arnold T., Finlayson S.A., Casal J.J. Stem transcriptome reveals mechanisms to reduce the energetic cost of shade-avoidance responses in tomato // Plant Physiol. 2012. V. 160. P. 1110–1119. https://doi.org/10.1104/pp.112.201921
- Reddy S., Holalu S., Casal J., Finlayson S. Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light // Plant Physiol. 2013. V. 163. P. 1047–1058. https://doi.org/10.1104/pp.113.221895
- Hayes S., Pantazopoulou C.K., van Gelderen K., Reinen E., Tween A.L., Sharma A., de Vries M., Prat S., Schuurink R.C., Testerink C., Pierik R. Salinity limits plant shade avoidance // Curr. Biol. 2019. V. 29. P. 1669–1676. https://doi.org/10.1016/j.cub.2019.03.042
- Vysotskaya L., Arkhipova T., Kudoyarova G., Veselov S. Dependence of growth inhibiting action of increased planting density on capacity of lettuce plants to synthesize ABA // J. Plant Physiol. 2018. V. 220. P. 69–73. https://doi.org/10.1016/j.jplph.2017.09.011
- Munemasa S., Hauser F., Park J., Waadt R., Brandt B., Schroeder J.I. Mechanisms of abscisic acid-mediated control of stomatal aperture // Curr. Opin. Plant Biol. 2015. V. 28. P. 154–162. https://doi.org/10.1016/j.pbi.2015.10.010
- Chen K., Li G.J., Bressan R.A., Song C., Song C.P., Zhu J.K., Zhao Y. Abscisic acid dynamics, signaling, and functions in plants // J. Integr. Plant. Biol. 2020. V. 62. P. 25–54. https://doi.org/10.1111/jipb.12899
- Hartung W., Sauter A., Turner N.C., Fillery I., Heilmeier H. Abscisic acid in soils: What is its function and which factors and mechanisms influence its concentration? // Plant Soil. 1996. V. 184. P. 105–110. https://doi.org/10.1007/BF00029279
- Сырова Д.С., Шапошников А.И., Юзихин О.С., Белимов А.А. Деструкция и трансформацмя фитогормонов микроорганизмами // Прикл. биохим. и микробиол. 2022. Т. 58. № 1. С. 3–22. https://doi.org/10.30906/0023-1134-2021-55-7-60-64
- Belimov A., Dodd I., Safronova V., Dumova V., Shaposhnikov A., Ladatko A., Davies W. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth // Plant Physiol. Biochem. 2014. V. 74. P. 84–91. https://doi.org/10.1016/j.plaphy.2013.10.032
- Vysotskaya L., Martynenko E., Ryabova A., Kuzmina L., Starikov S., Chetverikov S., Gaffarova E., Kudoyarova G. The growth-inhibitory effect of increased planting density can be reduced by abscisic acid-degrading bacteria // Biomolecules. 2023. V. 13. P. 1668. https://doi.org/10.3390/biom13111668
- Рябова А.С., Кузьмина Л.Ю., Мартыненко Е.В., Четвериков С.П., Мильман П.Ю., Высоцкая Л.Б. Выявление штаммов-деструкторов АБК и их влияние на всхожесть семян и рост проростков пшеницы // Экобиотехнология. 2023. Т. 6. № 3. С. 190–199 https://doi.org/10.31163/2618-964X-2023-6-3-190-199
- Chetverikov S.P., Sharipov D.A., Korshunova T.Y., Loginov O.N. Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D // Appl. Biochem. Microbiol. 2017. V. 53. P. 533–538. https://doi.org/10.1134/S0003683817050027
- King E.O., Ward M.K., Raney D.E. Two simple media for the demonstration of pyocyanin and fluorescin // J. Lab. Clin. Med. 1954. V. 44. P. 301–307. https://doi.org/10.5555/uri:pii:002221435490222X
- Veselov S.Yu., Kudoyarova G.R., Egutkin N.L., Gyuli-Zade V.G., Mustafina A.R., Kof E.K. Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3-acetic acid // Physiol. Plantarum. 1992. V. 86. P. 93–96.
- Kudoyarova G.R., Melentiev A.I., Martynenko E.V., Arkhipova T.N., Shendel G.V., Kuz’mina L.Yu., Dodd I.C., Veselov S.Yu. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots // Plant Physiol. Biochem. 2014. V. 83. Р. 285–291.
- Veselov S.Yu., Timergalina L.N., Akhiyarova G.R., Kudoyarova G.R., Korobova A.V., Ivanov I.I., Arkhipova T.N., Prinsen E. Study of cytokinin transport from shoots to roots of wheat plants is informed by a novel method of differential localization of free cytokinins bases or their ribosylated forms by means of their specific fixation // Protoplasma. 2018. V. 255. P. 1581–1594. https://doi.org/10.1007/s00709-018-1248-7
- Sun L.R., Wang Y.B., He S.B., Hao F.S. Mechanisms for abscisic acid inhibition of primary root growth // Plant Signal. Behav. 2018. V. 13. e1500069. https://doi.org/10.1080/15592324.2018.1500069
- Akhiyarova G., Veselov D., Ivanov R., Sharipova G., Ivanov I., Dodd I.C., Kudoyarova G. Root ABA accumulation delays lateral root emergence in osmotically stressed barley plants by decreasing root primordial IAA accumulation // Inter. J. Plant Biol. 2023. V. 14. P. 77–90. https://doi.org/10.3390/ijpb14010007
- Vysotskaya L., Martynenko E., Ryabova A., Kuzmina L., Starikov S., Chetverikov S., Gaffarova E., Kudoyarova G. The growth-inhibitory effect of increased planting density can be reduced by abscisic acid-degrading bacteria // Biomolecules. 2023. V. 13. P. 1668. https://doi.org/10.3390/biom13111668.
- Yun-jia T., Liesche J. The molecular mechanism of shade avoidance in crops-How data from Arabidopsis can help to identify targets for increasing yield and biomass production // J. Integr. Agric. 2017. V. 16(6). P. 1244–1255. https://doi.org/10.1016/S2095-3119(16)61434-X)
- Кузьмина Л.Ю., Высоцкая Л.Б., Галимзянова Н.Ф., Гильванова Е.А., Рябова А.С., Мелентьев А.И. Новые штаммы фосфатмобилизующих бактерий, продуцирующих ауксин, перспективные для сельскохозяйственной биотехнологии // Изв. УНЦ РАН. 2015. № 1. С. 40–46.
- Bakaeva M., Kuzina E., Vysotskaya L., Kudoyarova G., Arkhipova T., Rafikova G., Chetverikov S., Korshunova T., Chetverikova D., Loginov O. Capacity of pseudomonas strains to degrade hydrocarbons, produce auxins and maintain plant growth under normal conditions and in the presence of petroleum contaminants // Plants. 2020. V. 9. P. 379. https://doi.org/10.3390/plants9030379
- Pierik R., Ballare C.L. Control of plant growth and defense by photoreceptors: From mechanisms to opportunities in agriculture // Mol. Plant. 2021. V. 14. P. 61–76. https://doi.org/10.1016/j.molp.2020.11.021
Supplementary files
