Plant Growth and Development Regulators: Classification, Nature and Mechanism of Action
- Authors: Tarasov S.S.1, Mikhalev E.V.1, Rechkin A.I.1, Krutova E.K.1
-
Affiliations:
- Nizhny Novgorod State Agricultural Academy
- Issue: No 9 (2023)
- Pages: 65-80
- Section: Reviews
- URL: https://snv63.ru/0002-1881/article/view/647094
- DOI: https://doi.org/10.31857/S0002188123090120
- EDN: https://elibrary.ru/YUDEAW
- ID: 647094
Cite item
Abstract
Questions of the nature and mechanism of action of plant growth and development regulators (hereinafter referred to as regulators) are considered. It is proposed to use the classification of regulators depending on their original nature. Four groups of regulators are distinguished: pure chemicals, physical, biological and complex regulators. Attention is paid to the mechanisms of the relationship of artificial regulators with the natural system of regulation and integration of plants.
About the authors
S. S. Tarasov
Nizhny Novgorod State Agricultural Academy
Author for correspondence.
Email: tarasov_ss@mail.ru
Russia, 603022, Nizhny Novgorod, prosp. Gagarina 97
E. V. Mikhalev
Nizhny Novgorod State Agricultural Academy
Email: tarasov_ss@mail.ru
Russia, 603022, Nizhny Novgorod, prosp. Gagarina 97
A. I. Rechkin
Nizhny Novgorod State Agricultural Academy
Email: tarasov_ss@mail.ru
Russia, 603022, Nizhny Novgorod, prosp. Gagarina 97
E. K. Krutova
Nizhny Novgorod State Agricultural Academy
Email: tarasov_ss@mail.ru
Russia, 603022, Nizhny Novgorod, prosp. Gagarina 97
References
- Leivar P., Monte E. PIFs: systems integrators in plant development // Plant Cell. 2014. V. 26. № 1. P. 56–78. https://doi.org/10.1105/tpc.113.120857
- Plant hormones: biosynthesis, signal transduction, action / Ed. Davies P.J. Springer Science & Business Media, 2004. 750 p.
- Sparks E., Wachsman G., Benfey P.N. Spatiotemporal signalling in plant development // Nat. Rev. Genet. 2013. V.14. № 9. P. 631–644. https://doi.org/10.1038/nrg3541
- Went F.W. Phytohormones: structure and physiological activity // Arch. Biochem. 1949. № 20 (1). P. 131–136.
- Яхин О.И., Лубянов А.А., Яхин И.А. Современные представления о биостимуляторах // Агрохимия. 2014. № 7. С. 85–90.
- Яхин О.И., Лубянов А.А., Яхин И.А. Классификация биостимуляторов // Агрохимия. 2018. № 3. С. 90–95. https://doi.org/10.7868/S0002188118030122
- Chambolle C. Biostimulants: humus substances // PHM Rev. Hortic. 2005. V. 468. P. 21–23.
- Vespermann A., Kai M., Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana // Appl. Environ. Microbiol. 2007 V. 73. № 17. P. 5639–5641. https://doi.org/10.1128/AEM.01078-07
- Dunkel M., Schmidt U., Struck S., Berger L., Grue-ning B., Hossbach J., Jaeger I.S., Effmert U., Pie-chulla B., Eriksson R., Knudsen J., Preissner R. SuperScent – a database of flavors and scents // Nucleic Acids Res. 2009 V. 37. (Database issue): D291-4. https://doi.org/10.1093/nar/gkn695
- Billard V., Etienne P., Jannin L., Garnica M., Cruz F., Garcia-Mina J.-M., Yvin J.-C., Ourry A. Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.) // J. Plant Growth Regul. 2014. V. 33. № 2. P. 305–316.
- Chen C., Twito S., Miller G. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds // Plant Signal Behav. 2014. V. 9. № 12: e976489. https://doi.org/10.4161/15592324.2014.976489
- Lou Z., Sun Y., Bian S., Ali Baig S., Hu B., Xu X. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar // Chemosphere. 2017. № 169. P. 23–31. https://doi.org/10.1016/j.chemosphere.2016.11.044
- Bilbao-Sainz C., Chiou B.S., Williams T., Wood D., Du W.X., Sedej I., Ban Z., Rodov V., Poverenov E., Vinokur Y., McHugh T. Vitamin D-fortified chitosan films from mushroom waste // Carbohydr. Polym. 2017. № 1 (167). P. 97–104. https://doi.org/10.1016/j.carbpol.2017.03.010
- Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development // Development. 2018. V. 9. № 145 (15): dev164376. DOI: PMID: 30093413https://doi.org/10.1242/dev.164376
- Ortíz-Castro R., Contreras-Cornejo H.A., Macías-Rodríguez L., López-Bucio J. The role of microbial signals in plant growth and development // Plant Signal Behav. 2009 V. 4. № 8. P. 701–712. https://doi.org/10.4161/psb.4.8.9047
- Glick B.R. Plant growth-promoting bacteria: mechanisms and applications // Scientifica (Cairo). 2012:963401. https://doi.org/10.6064/2012/963401
- Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. Role of plant growth promoting Rhizobacteria in agricultural sustainability–A Review // Molecules. 2016. V. 21. № 5. P. 573. https://doi.org/10.3390/molecules21050573
- Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H. Biostimulants in plant science: A Global perspective // Front Plant Sci. 2017. № 7. P. 2049. https://doi.org/10.3389/fpls.2016.02049
- Jalal B., McNally R.J., Elias J.A., Potluri S., Ramachandran V.S. Fake it till you make it! Contaminating Rubber Hands (“Multisensory Stimulation TherapyЭ) to treat obsessive–compulsive disorder // Front Hum. Neurosci. 2020. № 13. P. 414. https://doi.org/10.3389/fnhum.2019.00414
- Jacome Burbano M.S., Gilson E. The Power of stress: The Telo-hormesis hypothesis // Cells. 2021. V. 10. № 5. P. 1156. https://doi.org/10.3390/cells10051156
- Brown P., Saa S. Biostimulants in agriculture // Front Plant Sci. 2015. № 6. P. 671. https://doi.org/10.3389/fpls.2015.00671
- Rouphael Y., Colla G. Editorial: biostimulants in agriculture // Front Plant Sci. 2020 № 11. P. 40. https://doi.org/10.3389/fpls.2020.00040
- Nephali L., Piater L.A., Dubery I.A., Patterson V., Huyser J., Burgess K., Tugizimana F. Biostimulants for plant growth and mitigation of abiotic stresses: A Metabolomics perspective // Metabolites. 2020. V. 10. № 12. P. 505. https://doi.org/10.3390/metabo10120505
- Hasanuzzaman M., Parvin K., Bardhan K., Nahar K., Anee T.I., Masud A.A.C., Fotopoulos V. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress // Cells. 2021. V. 10. № 10. P. 2537. https://doi.org/10.3390/cells10102537
- Sun T., Zhang Y. MAP-kinase cascades in plant development and immune signaling // EMBO Rep. 2022. V. 23. № 2. e53817. https://doi.org/10.15252/embr.202153817
- Reinert J. Phytohormones // Dtsch. Med. Wochenschr. 1960. № 5 (85). P. 234–236. https://doi.org/10.1055/s-0029-1209728
- Zhao Y. Auxin biosynthesis and its role in plant development // Annu. Rev. Plant Biol. 2010. № 61. P. 49–64. https://doi.org/10.1146/annurev-arplant-042809-112308
- Korasick D.A., Enders T.A., Strader L.C. Auxin biosynthesis and storage forms // J. Exp. Bot. 2013. V. 64. № 9. P. 2541–2555. https://doi.org/10.1093/jxb/ert080
- Zi J., Mafu S., Peters R.J. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism // Annu. Rev. Plant Biol. 2014. V. 65. P. 259–286. https://doi.org/10.1146/annurev-arplant-050213-035705
- Dubois M., Van den Broeck L., Inzé D. The Pivotal role of ethylene in plant growth // Trends Plant Sci. 2018. V. 23. № 4. P. 311–323. https://doi.org/10.1016/j.tplants.2018.01.003
- Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis // Inter. J. Mol. Sci. 2018. V. 19. № 12. P. 4045. https://doi.org/10.3390/ijms19124045
- Qin H., Huang R. Auxin controlled by ethylene steers root development // Inter. J. Mol. Sci. 2018. V. 19. № 11. P. 3656. https://doi.org/10.3390/ijms19113656
- Skalický V., Kubeš M., Napier R., Novák O. Auxins and cytokinins–the role of subcellular organization on homeostasis // Inter. J. Mol. Sci. 2018. V. 19. № 10. P. 3115. https://doi.org/10.3390/ijms19103115
- Sharma A., Zheng B. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins // Biomolecules. 2019. V. 9. № 9. P. 397. https://doi.org/10.3390/biom9090397
- Bidon B., Kabbara S., Courdavault V., Glévarec G., Oudin A., Héricourt F., Carpin S., Spíchal L., Binder B.M., Cock J.M., Papon N. Cytokinin and ethylene cell signaling pathways from prokaryotes to eukaryotes // Cells. 2020. V. 9. № 11. P. 2526. https://doi.org/10.3390/cells9112526
- Emenecker R.J., Strader L.C. Auxin-abscisic acid interactions in plant growth and development // Biomolecules. 2020. V. 10. № 2. P. 281. https://doi.org/10.3390/biom10020281
- Martignago D., Siemiatkowska B., Lombardi A., Conti L. Abscisic acid and flowering regulation: Many targets, different places // Inter. J. Mol. Sci. 2020. V. 21. № 24. P. 9700. https://doi.org/10.3390/ijms21249700
- Terceros G.C., Resentini F., Cucinotta M., Manrique S., Colombo L., Mendes M.A. The Importance of cytokinins during reproductive development in Arabidopsis and Beyond // Inter. J. Mol. Sci. 2020. V. 21. № 21. P. 8161. https://doi.org/10.3390/ijms21218161
- Ludwig-Müller J. Auxins in the right space and time regulate pea fruit development // J. Exp. Bot. 2022. V. 73. № 12. P. 3831–3835. https://doi.org/10.1093/jxb/erac237
- Betsuyaku S., Sawa S., Yamada M. The Function of the CLE peptides in plant development and plant–microbe interactions // Arabidopsis Book. 2011. № 9. e0149. https://doi.org/10.1199/tab.0149
- Штарк O.Ю., Шишова М.Ф., Повыдыш М.Н., Авдеева Г.С., Жуков В.А., Тихонович И.А. Стриголактоны – регуляторы симбиотрофии растений и микроорганизмов // Физиология растений. 2018. Т. 65. № 2. С. 83–100. https://doi.org/10.7868/S001533031802001X
- Aliche E.B., Screpanti C., De Mesmaeker A., Munnik T., Bouwmeester H.J. Science and application of strigolactones // New Phytol. 2020. V. 227. № 4. P. 1001–1011. https://doi.org/10.1111/nph.16489
- Janda T., Szalai G., Pál M. Salicylic acid signalling in plants // Inter. J. Mol. Sci. 2020. V. 21. № 7. P. 2655. https://doi.org/10.3390/ijms21072655
- Nolan T.M., Vukašinović N., Liu D., Russinova E., Yin Y. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses // Plant Cell. 2020. V. 32. № 2. P. 295–318. https://doi.org/10.1105/tpc.19.00335
- Li M., Yu G., Cao C., Liu P. Metabolism, signaling, and transport of jasmonates // Plant Commun. 2021. V. 2. № 5. P. 100231. https://doi.org/10.1016/j.xplc.2021.100231
- Yu X.J., Sun J., Zheng J.Y., Sun Y.Q., Wang Z. Metabolomics analysis reveals 6–benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytriumsp // J. Chem. Technol. Biotechnol. 2016. V. 91. № 4. P. 1199–1207. https://doi.org/10.1002/jctb.4869
- Xu F., Fan Y., Miao F., Hu G.R., Sun J., Yang G., Li F.L. Naphthylacetic acid and tea polyphenol application promote biomass and lipid production of nervonic acid–producing microalgae // Front Plant Sci. 2018. № 9. P. 506. https://doi.org/10.3389/fpls.2018.00506
- Hu C., Zhao H., Shi J., Li J., Nie X., Yang G. Effects of 2,4-dichlorophenoxyacetic acid on cucumber fruit development and metabolism // Inter. J. Mol. Sci. 2019. V. 20. № 5. P. 1126. https://doi.org/10.3390/ijms20051126
- Kaźmierczak A., Kunikowska A., Doniak M., Kornaś A. Mechanism of kinetin-induced death of Vicia faba ssp. minor root cortex cells // Sci. Rep. 2021. V. 11. № 1. P. 23746. https://doi.org/10.1038/s41598-021-03103-3
- Liu Z., Wang Y., Pu W., Zhu H., Liang J., Wu J., Hong L., Guan P., Hu J. 4-CPA (4-chlorophenoxyacetic acid) induces the formation and development of defective “Fenghou” (Vitis vinifera × V. labrusca) grape seeds // Biomolecules. 2021. V. 11. № 4. P. 515. https://doi.org/10.3390/biom11040515
- Шерстнева О.Н., Сурова Л.М., Синицына Ю.В., Агеева М.Н., Середнева Я.В., Воденеев В.А., Сухов В.С. Влияние фитогормонов и их аналогов на прорастание семян и морфометрические показатели проростков // Совр. пробл. науки и образ. 2015. № 6. С. 604.
- Kuznetsova O., Vlasenko E. Effect of natural and synthetic phytohormones on growth and development of higher basidiomycetes // Biotechnol. Acta. 2020. T. 13. № 5. C. 19–31.
- Erb M., Kliebenstein D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The Blurred functional trichotomy // Plant Physiol. 2020. V. 184. № 1. P. 39–52. https://doi.org/10.1104/pp.20.00433
- Hoang B.X., Shaw D.G., Levine S., Hoang C., Pham P. New approach in asthma treatment using excitatory modulator // Phytother Res. 2007. V. 21. № 6. P. 554–557. https://doi.org/10.1002/ptr.2107
- Lee J., Jung J., Son S.H., Kim H.B., Noh Y.H., Min S.R., Park K.H., Kim D.S., Park S.U., Lee H.S., Kim C.Y., Kim H.S., Lee H.K., Kim H. Profiling of the major phenolic compounds and their biosynthesis genes in Sophora flavescens Aiton // Sci. World J. 2018. № 1. P. 6218430. https://doi.org/10.1155/2018/6218430
- Brown D.E., Rashotte A.M., Murphy A.S., Normanly J., Tague B.W., Peer W.A., Taiz L., Muday G.K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis // Plant Physiol. 2001. V. 126. № 2. P. 524–535. https://doi.org/10.1104/pp.126.2.524
- Rasouli H., Farzaei M.H., Mansouri K., Mohammadzadeh S., Khodarahmi R. Plant cell cancer: May natural phenolic compounds prevent onset and development of plant cell malignancy? A Literature review // Molecules. 2016. V. 21. № 9. P. 1104. https://doi.org/10.3390/molecules21091104
- Malinovsky F.G., Thomsen M.F., Nintemann S.J., Jagd L.M., Bourgine B., Burow M., Kliebenstein D.J. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway // Elife. 2017. № 6. e29353. https://doi.org/10.7554/eLife.29353
- Salehin M., Li B., Tang M., Katz E., Song L., Ecker J.R., Kliebenstein D.J., Estelle M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels // Nat. Commun. 2019. V. 10. № 1. P. 4021. https://doi.org/10.1038/s41467-019-12002-1
- Kliebenstein D.J., Lambrix V.M., Reichelt M., Gershenzon J., Mitchell-Olds T. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis // Plant Cell. 2001. V. 13. № 3. P. 681–693. https://doi.org/10.1105/tpc.13.3.681
- Atwell S., Huang Y.S., Vilhjálmsson B.J., Willems G., Horton M., Li Y., Meng D., Platt A., Tarone A.M., Hu T.T., Jiang R., Muliyati N.W., Zhang X., Amer M.A., Baxter I., Brachi B., Chory J., Dean C., Debieu M., de Meaux J., Ecker J.R., Faure N., Kniskern J.M., Jones J.D., Michael T., Nemri A., Roux F., Salt D.E., Tang C., Todesco M., Traw M.B., Weigel D., Marjoram P., Borevitz J.O., Bergelson J., Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines // Nature. 2010. V. 465 (7298). P. 627–631. https://doi.org/10.1038/nature08800
- Kemen A.C., Honkanen S., Melton R.E., Findlay K.C., Mugford S.T., Hayashi K., Haralampidis K., Rosser S.J., Osbourn A. Investigation of triterpene synthesis and regulation in oats reveals a role for β-amyrin in determining root epidermal cell patterning // Proc. Nat. Acad. Sci. USA. 2014. V. 111. № 23. P. 8679–8684. https://doi.org/10.1073/pnas.1401553111
- Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses // BMC Plant Biol. 2016. № 14. P. 86. https://doi.org/10.1186/s12870-016-0771-y
- Ullah A., Manghwar H., Shaban M., Khan A.H., Akbar A., Ali U., Ali E., Fahad S. Phytohormones enhanced drought tolerance in plants: a coping strategy // Environ. Sci. Pollut. Res. Int. 2018. V. 25. № 33. P. 33103–33118. https://doi.org/10.1007/s11356-018-3364
- Ciura J., Kruk J. Phytohormones as targets for improving plant productivity and stress tolerance // J. Plant Physiol. 2018. № 229. P. 32–40. https://doi.org/10.1016/j.jplph.2018.06.013
- Kopittke P.M. Role of phytohormones in aluminium rhizotoxicity // Plant Cell Environ. 2016. V. 39. № 10. P. 2319–2328. https://doi.org/10.1111/pce.12786
- Collum T.D., Culver J.N. The impact of phytohormones on virus infection and disease // Curr. Opin. Virol. 2016. № 17. P. 25–31. https://doi.org/10.1016/j.coviro.2015.11.003
- Ling T.F., Xuan W., Fan Y.R., Sun Y.G., Xu S., Huang B.K., Huang S.R., Shen W.B. The effect of exogenous glucose, fructose and NO donor sodium nitroprusside (SNP) on rice seed germination under salt stress // Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2005. V. 31. № 2. P. 205–212.
- Yuan K., Wysocka-Diller J. Phytohormone signalling pathways interact with sugars during seed germination and seedling development // J. Exp. Bot. 2006. V. 57. № 12. P. 3359–3367. https://doi.org/10.1093/jxb/erl096
- Zhu G., Ye N., Zhang J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis // Plant Cell Physiol. 2009. V. 50. № 3. P. 644–651. https://doi.org/10.1093/pcp/pcp022
- Zhao Y., Yang K.J., Li Z.T., Zhao C.J., Xu J.Y., Hu X., Shi X.X., Ma L.F. Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar // Ying Yong Sheng Tai Xue Bao. 2015. V. 26. № 9. P. 2735–2742.
- Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. Role of sugars under abiotic stress // Plant Physiol. Biochem. 2016. V. 109. P. 54–61. https://doi.org/10.1016/j.plaphy.2016.09.005
- To J.P., Reiter W.D., Gibson S.I. Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars // BMC Plant Biol. 2002. V. 2. P. 4. https://doi.org/10.1186/1471-2229-2-4
- Li R., He J., Xie H., Wang W., Bose S.K., Sun Y., Hu J., Yin H. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.) // Inter. J. Biol. Macromol. 2019. V. 126. P. 91–100. https://doi.org/10.1016/j.ijbiomac.2018.12.118
- Lopez-Moya F., Escudero N., Zavala-Gonzalez E.A., Esteve-Bruna D., Blázquez M.A., Alabadí D., Lopez-Llorca L.V. Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan // Sci. Rep. 2017. V. 7. № 1. P. 16813. https://doi.org/10.1038/s41598-017-16874-5
- Sanchez S.E., Cagnola J.I., Crepy M., Yanovsky M.J., Casal J.J. Balancing forces in the photoperiodic control of flowering // Photochem. Photobiol. Sci. 2011. V. 10. № 4. P. 451–460. https://doi.org/10.1039/c0pp00252f
- Орлов Б.Н., Авзалов Р.Х., Гущин П.Я., Чурмасов А.В., Казаков А.В. Биоритмы и электромагнитные колебания. М.: Капитал Принт, 2011. 320 с.
- Chew Y.H., Wilczek A.M., Williams M., Welch S.M., Schmitt J., Halliday K.J. An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time // New Phytol. 2012. V. 194. № 3. P. 654–665. https://doi.org/10.1111/j.1469-8137.2012.04069.x
- Maffei M.E. Magnetic field effects on plant growth, development, and evolution // Front Plant Sci. 2014. V. 5. P. 445. https://doi.org/10.3389/fpls.2014.00445
- Kong S.G., Okajima K. Diverse photoreceptors and light responses in plants // J. Plant Res. 2016. V. 129. № 2. P. 111–114. https://doi.org/10.1007/s10265-016-0792-5
- Carvalho R.F., Campos M.L., Azevedo R.A. The role of phytochrome in stress tolerance // J. Integr. Plant Biol. 2011. V. 53. № 12. P. 920–929. https://doi.org/10.1111/j.1744-7909.2011.01081.x
- Kreslavski V.D., Kosobryukhov A.A., Schmitt F.J., Semenova G.A., Shirshikova G.N., Khudyakova A.Y., Allakhverdiev S.I. Photochemical activity and the structure of chloroplasts in Arabidopsis thaliana L. mutants deficient in phytochrome A and B // Protoplasma. 2017. V. 254. № 3. P. 1283–1293. https://doi.org/10.1007/s00709-016-1020-9
- Inagaki N., Kinoshita K., Kagawa T., Tanaka A., Ueno O., Shimada H., Takano M. Phytochrome B mediates the regulation of chlorophyll biosynthesis through transcriptional regulation of ChlH and GUN4 in rice seedlings // PLoS One. 2015.V. 10. № 8. e0135408. https://doi.org/10.1371/journal.pone.0135408
- Kami C., Lorrain S., Hornitschek P., Fankhauser C. Light-regulated plant growth and development // Curr. Top. Dev. Biol. 2010. № 91. P. 29–66. https://doi.org/10.1016/S0070-2153(10)91002-8
- Zhang H., Lin C., Gu L. Light regulation of alternative pre–mRNA splicing in plants // Photochem. Photobiol. 2017. V. 93. № 1. P. 159–165. https://doi.org/10.1111/php.12680
- Xu C., Zhang Y., Yu Y., Li Y., Wei S. Suppression of Arabidopsis flowering by near-null magnetic field is mediated by auxin // Bioelectromagnetics. 2018.V. 39. № 1. P. 15–24. https://doi.org/10.1002/bem.22086
- Morales A., Yin X., Harbinson J., Driever S.M., Molenaar J., Kramer D.M., Struik P.C. In Silico analysis of the regulation of the photosynthetic electron transport chain in C-3 plants // Plant Physiol. 2018. V. 176. № 2. P. 1247–1261. https://doi.org/10.1104/pp.17.00779
- Wei H., Kong D., Yang J., Wang H. Light regulation of stomatal development and patterning: shifting the paradigm from Arabidopsis to grasses // Plant Commun. 2020. V. 1(2). P. 100030. https://doi.org/10.1016/j.xplc.2020.100030
- Xiang S., Wu S., Jing Y., Chen L., Yu D. Phytochrome B regulates jasmonic acid-mediated defense response against Botrytis cinerea in Arabidopsis // Plant Divers. 2021. V. 44. № 1. P. 109–115. https://doi.org/10.1016/j.pld.2021.01.007
- Ковальова О.В. Вплив електромагнітних полів і випромінювань на біооб'єкти (літературний огляд) // Актуальні питання біології, екології та хімії. 2020. Т. 1. № 1. С. 64–85.
- Ikeda S., Ukai K., Murase H., Fukuda H. Effect of magnetic field for the circadian oscillation in plant root // IFAC Proceed. V. 2013. V. 46. № 4. P. 209–210.
- Pazur A., Rassadina V. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana // BMC Plant Biol. 2009. № 9 P. 47. https://doi.org/10.1186/1471-2229-9-47
- Tafforeau M., Verdus M.C., Norris V., White G.J., Cole M., Demarty M., Thellier M., Ripoll C. Plant sensitivity to low intensity 105 GHz electromagnetic radiation // Bioelectromagnetics. 2004. V. 25. № 6. P. 403–407. https://doi.org/10.1002/bem.10205
- Agliassa C., Narayana R., Bertea C.M., Rodgers C.T., Maffei M.E. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes // Bioelectromagnetics. 2018. V. 39. № 5. P. 361–374. https://doi.org/10.1002/bem.22123
- Синицына Ю.В., Середнева Я.В., Кальясова Е.А., Веселов А.П. Влияние комбинированного действия низкочастотного переменного магнитного поля и гипертермии на уровень гидропероксидов и ростовые реакции растений гороха // Изв. Уфим. НЦ РАН. 2018. № 3–5. С. 30–35.
- Половинкина Е.О., Кальясова Е.А., Синицына Ю.В., Веселов А.П. Изменение уровня перекисного окисления липидов и активности компонентов антиоксидантного комплекса в хлоропластах гороха при воздействии слабых импульсных магнитных полей // Физиология растений. 2011. Т. 58. № 6. С. 930–934.
- Galindo F.G., Vernier P.T., Dejmek P., Vicente A., Gundersen M.A. Pulsed electric field reduces the permeability of potato cell wall // Bioelectromagnetics. 2008. V. 29. № 4. P. 296–301. https://doi.org/10.1002/bem.20394
- Ding J., Johnson J., Chu Y. F., Feng H. Enhancement of γ-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound // Food Chem. 2019. V. 283. P. 239–247. https://doi.org/10.1016/j.foodchem.2018.12.136
- Miano A.C., Sabadoti V.D., Augusto P.E.D. combining ionizing irradiation and ultrasound technologies: effect on beans hydration and germination // J. Food Sci. 2019. V. 84. № 11. P. 3179–3185.
- Bao G., Zhou Q., Li S, Ashraf U., Huang S., Miao A., Cheng Z., Wan X., Zheng Y. Transcriptome Analysis revealed the mechanisms involved in ultrasonic seed treatment–induced aluminum tolerance in peanut // Front Plant Sci. 2022. № 12. P. 807021. https://doi.org/10.3389/fpls.2021.807021
- Okada K., Kudo N., Hassan M.A., Kondo T., Yamamoto K. Threshold curves obtained under various gaseous conditions for free radical generation by burst ultrasound – Effects of dissolved gas, microbubbles and gas transport from the air // Ultras. Sonochem. 2009. V. 16. № 4. P. 512–518. https://doi.org/10.1016/j.ultsonch.2008.11.010
- Gebicka L., Gebicki J.L. The effect of ultrasound on heme enzymes in aqueous solution // J. Enzyme Inhib. 1997. V. 12. № 2. P. 133–141. https://doi.org/10.3109/14756369709035814
- Maresca D., Lakshmanan A., Abedi M., Bar-Zion A., Farhadi A., Lu G.J., Szablowski J.O., Wu D., Yoo S., Shapiro M.G. Biomolecular ultrasound and sonogenetics // Annu. Rev. Chem. Biomol. Eng. 2018. V. 9. P. 229–252.
- Ogawa R., Watanabe A., Morii A. Ultrasound up-regulates expression of heme oxygenase-1 gene in endothelial cells // J. Med. Ultrason. 2015. V. 42. № 4. P.467–475. https://doi.org/10.1007/s10396-015-0635-3
- Hidvégi N., Gulyás A., Dobránszki J. Ultrasound, as a hypomethylating agent, remodels DNA methylation and alters mRNA transcription in winter wheat (Triticum aestivum L.) seedlings // Physiol. Plant. 2022. V. 174. № 5. e13777.
- Jiang Z., Yao K., Yuan X., Mu Z., Gao Z., Hou J., Jiang L. Effects of ultrasound treatment on physico-chemical, functional properties and antioxidant activity of whey protein isolate in the presence of calcium lactate // J. Sci. Food Agric. 2018. V. 98. № 4. P. 1522–1529. https://doi.org/10.1002/jsfa.8623
- Trakselyte-Rupsiene K., Juodeikiene G., Cernauskas D., Bartkiene E., Klupsaite D., Zadeike D., Bendoraitiene J., Damasius J., Ignatavicius J., Sikorskaite-Gudziuniene S. Integration of ultrasound into the development of plant-based protein hydrolysate and its bio-stimulatory effect for growth of wheat grain seedlings in vivo // Plants (Basel). 2021. V. 10. № 7. P. 1319. https://doi.org/10.3390/plants10071319
- Armada E., Portela G., Roldan A., Azcon R. Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions // Geoderma. 2014. № 232. P. 640–648. https://doi.org/10.1016/j.geoderma.2014.06.025
- Cantabella D., Dolcet-Sanjuan R., Teixidó N. Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions // Planta. 2022. V. 255. № 6. P. 117. https://doi.org/10.1007/s00425-022-03897-0
- Nakkeeran S., Fernando W.G.D., Siddiqui Z.A. Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and dideases // PGPR: Biocontrol and Biofertilization / Ed. Siddiqui Z.A. The Netherlands, Dordrecht: Springer, 2005. P. 257–296.
- Porcel R., Zamarreño Á.M., García-Mina J.M., Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants // BMC Plant Biol. 2014. № 14. P. 36. https://doi.org/10.1186/1471-2229-14-36
- Flores-Félix J.D., Silva L.R., Rivera L.P., Marcos-García M., García-Fraile P., Martínez-Molina E., Mateos P.F., Velázquez E., Andrade P., Rivas R. Plants probiotics as a tool to produce highly functional fruits: the case of phyllobacterium and vitamin C in strawberries // PLoS One. 2015. V. 10. № 4. e0122281. https://doi.org/10.1371/journal.pone.0122281
- Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Wei H.X., Paré P.W., Kloepper J.W. Bacterial volatiles promote growth in Arabidopsis // Proc. Nat. Acad. Sci. USA. 2003. V. 100. № 8. P. 4927–4932. https://doi.org/10.1073/pnas.0730845100
- Kanchiswamy C.N., Malnoy M., Maffei M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity // Front Plant Sci. 2015. № 6. P. 151. https://doi.org/10.3389/fpls.2015.00151
- Kumar H., Bajpai V.K., Dubey R.C. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L.) var. Manak by bacterial combinations amended with chemical fertilizer // Crop Protect. 2010. № 29. P. 591–598. https://doi.org/10.1016/j.cropro.2010.01.002
- Choudhary D.K., Sharma K.P., Gaur R.K. Biotechnological perspectives of microbes in agro-ecosystems // Biotechnol. Lett. 2011. V. 33. № 10. P. 1905–1910. https://doi.org/10.1007/s10529-011-0662-0
- Ahmad M., Zahir Z.A., Khalid M. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields // Plant Physiol. Biochem. 2013. № 63. P. 170–176. https://doi.org/10.1016/j.plaphy.2012.11.024
- Brown P., Saa S. Biostimulants in agriculture // Front Plant Sci. 2015. № 6. P. 671. https://doi.org/10.3389/fpls.2015.00671
- Яхин О.И., Лубянов А.А., Яхин И.Ф. Физиологическая активность биостимуляторов и эффективность их применения // Агрохимия. 2016. № 6. С. 72–94.
- Basak A. Biostimulators-definitions, classification and legislation // Monographs Series: Biostimulators in Modern Agriculture. General Aspects. Warsaw: Wieś Jutra, 2008. C. 7–17.
- Bulgari R., Cocetta G., Trivellini A., Vernieri P., Ferrante A. Biostimulants and crop responses: a review // Biol. Agric. Hortic. 2015. № 31. P. 1–17. https://doi.org/10.1080/01448765.2014.964649
- Белопухов С.Л., Дмитревская И.И., Гришина Е.А. Физико-химические свойства органо-минерального комплекса из растительных остатков льняной костры // Агрохимия. 2016. № 6. С. 20–28.
- Титова В.И., Варламова Л.Д., Гейгер Е.Ю., Короленко И.Д. Оценка фитотоксичности порошка яичной скорлупы по ее влиянию на посевные качества семян различных сельскохозяйственных культур / Вестн. Рязан. ГАТУ им. П.А. Костычева. 2017. № 1. С. 47–53.
- González-González M.F., Ocampo-Alvarez H., Santacruz-Ruvalcaba F., Sánchez-Hernández C.V., Casarrubias-Castillo K., Becerril-Espinosa A., Castañeda-Nava J.J., Hernández-Herrera R.M. Physiological, ecological, and biochemical implications in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract // Front Plant Sci. 2020. № 11. P. 999. https://doi.org/10.3389/fpls.2020.00999
- Torres N., Yu R., Kurtural S.K. Inoculation with mycorrhizal fungi and irrigation management shape the bacterial and fungal communities and networks in vineyard soils // Microorganisms. 2021. V. 9. № 6. P. 1273. https://doi.org/10.3390/microorganisms9061273
- Saia S., Corrado G., Vitaglione P., Colla G., Bonini P., Giordano M., Stasio E.D., Raimondi G., Sacchi R., Rouphael Y. An Endophytic fungi-based biostimulant modulates volatile and non-volatile secondary metabolites and yield of greenhouse Basil (Ocimum basilicum L.) through variable mechanisms dependent on salinity stress level // Pathogens. 2021. V. 10. № 7. P. 797. https://doi.org/10.3390/pathogens10070797
- Chen H., Mao L., Zhao N., Xia C., Liu J., Kubicek C.P., Wu W., Xu S., Zhang C. Verification of TRI3 acetylation of trichodermol to trichodermin in the plant endophyte Trichoderma taxi // Front Microbiol. 2021. № 12. P. 731425. https://doi.org/10.3389/fmicb.2021.731425
- Тарчевский И.А. Сигнальные системы клеток растений. М.: Наука, 2002. 294 с.
- Namdeo A.G. Plant cell elicitation for production of secondary metabolites: a review // Pharmacogn. Rev. 2007. V. 1. № 1. P. 69–79.
- Лукаткин А.С., Семенова А.С., Лукаткин А.А. Влияние регуляторов роста на проявление токсического действия гербицидов на растения // Агрохимия. 2016. № 1. С. 73–95.
- Dias M.I., Sousa M.J., Alves R.C., Ferreira I.C.F.R. Exploring plant tissue culture to improve the production of phenolic compounds: a review // Ind. Crop. Prod. 2016. V. 82. P. 9–22.
- Luziatelli F., Ficca A.G., Colla G., Baldassarre Švecová E., Ruzzi M. Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce // Front Plant Sci. 2019. № 10. P. 60. https://doi.org/10.3389/fpls.2019.00060
- Moretti B., Bertora C., Grignani C., Lerda C., Celi L., Sacco D. Conversion from mineral fertilisation to MSW compost use: Nitrogen fertiliser value in continuous maize and test on crop rotation // Sci. Total. Environ. 2020. V. 705. P. 135308. https://doi.org/10.1016/j.scitotenv.2019.135308
- Lim S.L., Wu T.Y., Lim P.N., Shak K.P. The use of vermicompost in organic farming: overview, effects on soil and economics // J. Sci. Food Agric. 2015. V. 95. № 6. P. 1143–1156. https://doi.org/10.1002/jsfa.6849
- Liu Z., Rong Q., Zhou W., Liang G. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil // PLoS One. 2017. V. 12. № 3. e0172767. https://doi.org/10.1371/journal.pone.0172767
- Hou M.M., Lü F.L., Zhang H.T., Zhou Y.T., Lu G.Y., Ayaz M., Li Q.H., Yang X.Y., Zhang S.L. Effect of organic manure substitution of synthetic nitrogen on crop yield and N2O emission in the winter wheat-summer maize rotation system // Huan Jing Ke Xue. 2018. V. 39. № 1. P. 321–330. https://doi.org/10.13227/j.hjkx.201707010
- Murrell E.G., Cullen E.M. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance // Environ. Entomol. 2014. Oct. 43 (5). P. 1264–1274. https://doi.org/10.1603/EN14008
- Yang S., Xiao Y.N., Xu J. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation // Environ. Sci. Pollut. Res. Int. 2018. V. 25. № 10. P. 9958–9968. https://doi.org/10.1007/s11356-018-1285-y
- Ugena L., Hýlová A., Podlešáková K., Humplík J.F., Doležal K., Diego N., Spíchal L. Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth // Front Plant Sci. 2018. № 9. P. 1327. https://doi.org/10.3389/fpls.2018.01327
- Masondo N.A., Kulkarni M.G., Finnie J.F., Van Staden J. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress // Ecotoxicol. Environ. Saf. 2018. № 147. P. 43–48. https://doi.org/10.1016/j.ecoenv.2017.08.017
- Campobenedetto C., Grange E., Mannino G., van Arkel J., Beekwilder J., Karlova R., Garabello C., Contartese V., Bertea C.M. A Biostimulant seed treatment improved heat stress tolerance during cucumber seed germination by acting on the antioxidant system and glyoxylate cycle // Front Plant Sci. 2020. № 11. P. 836. https://doi.org/10.3389/fpls.2020.00836
- Yook J.S., Kim M., Pichiah P.B., Jung S.J., Chae S.W., Cha Y.S. The Antioxidant properties and inhibitory effects on HepG2 cells of chicory cultivated using three different kinds of fertilizers in the absence and presence of pesticides // Molecules. 2015. V. 20. № 7. P. 12061–12075. https://doi.org/10.3390/molecules200712061
- Pereira C., Dias M.I., Petropoulos S.A., Plexida S., Chrysargyris A., Tzortzakis N., Calhelha R.C., Ivanov M., Stojković D., Soković M., Barros L., Ferreira I. The Effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.) // Molecules. 2019. V. 24. № 24. P. 4494. https://doi.org/10.3390/molecules24244494
- Monda H., Cozzolino V., Vinci G., Spaccini R., Piccolo A. Molecular characteristics of water-extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize // Sci. Total Environ. 2017. V. 590–591. P. 40–49. https://doi.org/10.1016/j.scitotenv.2017.03.026
- Iwamura H., Nishimura K., Fujita T. Quantitative structure-activity relationships of insecticides and plant growth regulators: comparative studies toward understanding the molecular mechanism of action // Environ. Health Perspect. 1985. № 61. P. 307–320. https://doi.org/10.1289/ehp.8561307
- Moffett A.S., Bender K.W., Huber S.C., Shukla D. Allosteric control of a plant receptor kinase through S-glutathionylation // Biophys. J. 2017. V. 113. № 11. P. 2354–2363. https://doi.org/10.1016/j.bpj.2017.08.059
- Shumilina J., Kusnetsova A., Tsarev A., Janse van Rensburg H.C., Medvedev S., Demidchik V., Van den Ende W., Frolov A. Glycation of plant proteins: Regulatory roles and interplay with sugar signalling? // Inter. J. Mol. Sci. 2019. V. 20. № 9. P. 2366. https://doi.org/10.3390/ijms20092366
- Zhang H., Liu Y., Wen F., Yao D., Wang L., Guo J., Ni L., Zhang A., Tan M., Jiang M. A Novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice // J. Exp. Bot. 2014. V. 65. № 20. P. 5795–5809. https://doi.org/10.1093/jxb/eru313
- Baldoni E., Genga A., Cominelli E. Plant MYB transcription factors: Their role in drought response mechanisms // Inter. J. Mol. Sci. 2015. V. 6. № 7. P. 15811–15851. https://doi.org/10.3390/ijms160715811
- Vodeneev V., Akinchits E., Sukhov V. Variation potential in higher plants: Mechanisms of generation and propagation // Plant Signal Behav. 2015. V. 10. № 9. e1057365.
- Sarwar R., Li L., Yu J., Zhang Y., Geng R., Meng Q., Zhu K., Tan X.L. Functional characterization of the cystine-rich-receptor-like kinases (CRKs) and their expression response to Sclerotinia sclerotiorum and abiotic stresses in Brassica napus // Inter. J. Mol. Sci. 2022. V. 24. № 1. P. 511. https://doi.org/10.3390/ijms24010511
- Hasanuzzaman M., Alhaithloul H.A.S., Parvin K., Bhuyan M.H.M.B., Tanveer M., Mohsin S.M., Nahar K., Soliman M.H., Mahmud J.A., Fujita M. Polyamine action under metal/metalloid stress: Regulation of biosynthesis, metabolism, and molecular interactions // Inter. J. Mol. Sci. 2019. V. 20. № 13. P. 3215. https://doi.org/10.3390/ijms20133215
- Zhang X., Ervin E.H. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance // Crop Sci. 2004. V. 44. № 5. P. 1737–1745.
- Kiyosaki T., Matsumoto I., Asakura T., Funaki J., Kuroda M., Misaka T., Arai S., Abe K. Gliadain, a gibberellin-inducible cysteine proteinase occurring in germinating seeds of wheat, Triticum aestivum L., specifically digests gliadin and is regulated by intrinsic cystatins // FEBS J. 2007. V. 274. № 8. P. 1908–1917. https://doi.org/10.1111/j.1742-4658.2007.05749.x
- Wang L., Ruan Y.L. Regulation of cell division and expansion by sugar and auxin signaling // Front Plant Sci. 2013. № 4. P. 163. https://doi.org/10.3389/fpls.2013.00163
- Vieira B.C., Bicalho E.M., Munné-Bosch S., Garcia Q.S. Abscisic acid regulates seed germination of Vellozia species in response to temperature // Plant Biol (Stuttg). 2017. V. 19. № 2. P. 211–216. https://doi.org/10.1111/plb.12515
- Shuai H., Meng Y., Luo X., Chen F., Zhou W., Dai Y., Qi Y., Du J., Yang F., Liu J., Yang W., Shu K. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio // Sci. Rep. 2017. V. 7. № 1. P. 12620. https://doi.org/10.1038/s41598-017-13093-w
- Erbs G., Newman M.A. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe–associated molecular patterns (MAMPs), in plant innate immunity // Mol. Plant Pathol. 2012. V. 13. № 1. P. 95–104. https://doi.org/10.1111/j.1364-3703.2011.00730.x
- Tanaka K., Nguyen C.T., Liang Y., Cao Y., Stacey G. Role of LysM receptors in chitin-triggered plant innate immunity // Plant Signal Behav. 2013. V. 8. № 1. e22598. https://doi.org/10.4161/psb.22598
- Trdá L., Boutrot F., Claverie J., Brulé D., Dorey S., Poinssot B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline // Front Plant Sci. 2015. № 6. P. 219. https://doi.org/10.3389/fpls.2015.00219
- Martinez-Corral R., Liu J., Prindle A., Süel G.M., Garcia-Ojalvo J. Metabolic basis of brain-like electrical signalling in bacterial communities // Philos. Trans R. Soc. Lond. B. Biol. Sci. 2019. V. 374. № 1774. P. 20180382. https://doi.org/10.1098/rstb.2018.0382
- Nohales M.A., Kay S.A. Molecular mechanisms at the core of the plant circadian oscillator // Nat. Struct. Mol. Biol. 2016. V. 23. № 12. P. 1061–1069. https://doi.org/10.1038/nsmb.3327
- Andres J., Blomeier T., Zurbriggen M.D. Synthetic switches and regulatory circuits in plants // Plant Physiol. 2019. V. 179. № 3. P. 862–884. https://doi.org/10.1104/pp.18.01362
- Du S., Chen L., Ge L., Huang W. A Novel loop: Mutual regulation between epigenetic modification and the circadian clock // Front Plant Sci. 2019. № 10. P. 22. https://doi.org/10.3389/fpls.2019.00022
- McClung C.R. The Plant circadian oscillator // Biology (Basel). 2019. V. 8. № 1. P. 14. https://doi.org/10.3390/biology8010014
- Webb A.A.R., Seki M., Satake A., Caldana C. Continuous dynamic adjustment of the plant circadian oscillator // Nat. Commun. 2019. V. 10. № 1. P. 550. https://doi.org/10.1038/s41467-019-08398-5
- Perianez-Rodriguez J., Rodriguez M., Marconi M., Bustillo-Avendaño E., Wachsman G., Sanchez-Corrionero A., De Gernier H., Cabrera J., Perez-Garcia P., Gude I., Saez A., Serrano-Ron L., Beeckman T., Benfey P.N., Rodríguez-Patón A., Del Pozo J.C., Wabnik K., Moreno-Risueno M.A. An auxin-regulable oscillatory circuit drives the root clock in Arabidopsis // Sci. Adv. 2021. V. 7. № 1. eabd4722. https://doi.org/10.1126/sciadv.abd4722
- Stephani M., Picchianti L., Gajic A., Beveridge R., Skarwan E., Sanchez de Medina Hernandez V., Mohseni A., Clavel M., Zeng Y., Naumann C., Matuszkiewicz M., Turco E., Loefke C., Li B., Dürnberger G., Schutzbier M., Chen H.T., Abdrakhmanov A., Savova A., Chia K.S., Djamei A., Schaffner I., Abel S., Jiang L., Mechtler K., Ikeda F., Martens S., Clausen T., Dagdas Y. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress // Elife. 2020. № 9. e58396. https://doi.org/10.7554/eLife.58396
Supplementary files
