DURABILITY IN WATER OF MATRICES FOR RARE-EARTH – ACTINIDE FRACTION OF HIGH-LEVEL RADIOACTIVE WASTE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The durability in waters of matrices for rare-earth – actinide fraction HLW has been studied at 25 (1 atm.), 200 or 240°C (pressure of saturated vapor). The samples composed of Nd2ZrTiO7 (cubic pyrochlore-type structure) or Nd4(Ti,Zr)9O24 (orthorhombic symmetry, no natural analogue), phases were obtained by induction melting in a “cold” crucible. Leaching rate of Nd (imitator of REE-MA fraction) on the 28th day of experiment was lower than 5 × 10–8 g/(cm2 day). These results confirmed a very high durability of the ceramic waste forms in hot underground waters.

作者简介

I. Melnikova

Leading Research Institute of Chemical Technology JSC; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: irina.sokolova95@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow

M. Kalenova

Leading Research Institute of Chemical Technology JSC

Email: irina.sokolova95@yandex.ru
Russian Federation, Moscow

A. Shchepin

Leading Research Institute of Chemical Technology JSC

Email: irina.sokolova95@yandex.ru
Russian Federation, Moscow

S. Yudintsev

Leading Research Institute of Chemical Technology JSC; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: irina.sokolova95@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow

参考

  1. Hatch L.P. Ultimate disposal of radioactive wastes // Amer. Scientist. 1953. V. 41. P. 410–421.
  2. Hench L.L., Clark D.E., Cambell J. High level waste immobilization forms // Nucl. Chem. Waste Managem. 1984. V. 5. P. 149–173.
  3. Radioactive waste forms for the future. Lutz W., Ewing R.C. (eds.). NY: Elsevier, 1988. 778 p.
  4. Полуэктов П.П., Суханов Л.П., Матюнин Ю.И. Научные подходы и технические решения в области обращения с жидкими высокоактивными отходами // Росс. хим. журнал. 2005. Т. XLIX. № 4. С. 29–41.
  5. Юдинцев С.В., Никольский М.С., Стефановская О.И., Никонов Б.С. Кристаллохимический фактор выбора матриц РЗЭ–актинидов // Доклады РАН. Науки о Земле. 2022. Т. 504. № 2. С. 89–96.
  6. Donald I.W. Waste immobilization in glass and ceramic based hosts: radioactive, toxic, and hazardous wastes. Chichester, UK: John Wiley & Sons Ltd., 2010. 507 p.
  7. Алой А.С., Никандрова М.В. Выщелачивание боросиликатных стекол, содержащих модельные ВАО ОДЦ ГХК, в минерализованной воде гранитоидной формации // Радиохимия. 2015. Т. 57. № 5. С. 466–470.
  8. Мартынов К.В., Захарова Е.В. Выщелачивание матриц с радиоактивными отходами в условиях захоронения на примере модельного фосфатного стекла // Радиохимия. 2021. Т. 63. № 1. С. 80–92.
  9. Frolova A.V., Danilov S.S., Vinokurov S.E. Corrosion behavior of some glasses immobilized with REE in simulated mineralized solutions // Ceramics Intern. 2022. V. 48. Iss. 14. P. 19644–19654.
  10. Ringwood A.E., Kesson S.E., Ware N.G., Hibberson W.O., Major A. The SYNROC process: A geochemical approach to nuclear waste immobilization // Geoch. Journ. 1979. V. 13. P. 141–165.
  11. Lumpkin G.R. Ceramic host phases for nuclear waste remediation // Experimental and Theoretical Approaches to Actinide Chemistry. J.K. Gibson, W.A. de Jong (eds.). Wiley, 2018. P. 333–376.
  12. Vernaz É., Bruezière J. History of nuclear waste glass in France // Procedia Materials Science. 2014. V. 7. P. 3–9.
  13. Yudintsev S.V., Stefanovsky S.V., Kalenova M.Yu., Nikonov B.S., Nikol’skii M.S., Koshcheev A.M., Shchepin A.S. Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting // Radiochemistry. 2015. V. 57. № 3. P. 321–333.
  14. Amoroso J.W., Marra J., Dandeneau C.S., Brinkman K., Xu Y., Tang M., Maio V., Webb S.M., Chiu W.K.S. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment // Journal of Nuclear Materials. 2017. V. 486. P. 283–297.
  15. Митянин А.С., Мусатов Н.Д., Полуэктов П.П., Смелова Т.В., Шестоперов И.Н. Технология кальцинации жидких радиоактивных отходов в роторном кальцинаторе // Экология и промышленность России. 2012. № 3. С. 12–15.
  16. Shoup S.S., Bamberger C.E., Tyree J.L., Anovitz L. Lanthanide-containing zirconotitanate solid solutions // J. Solid State Chem. 1996. V. 127. P. 231–239.
  17. Weber W.J. Radiation and thermal ageing of nuclear waste glass // Procedia Materials Science. 2014. V. 7. P. 237–246.
  18. Yudintsev S.V., Malkovsky V.I., Kalenova M.Yu. The thermal field around a borehole repository of radioactive waste // Doklady Earth Sciences. 2021. V. 498. Pt. 2. P. 525–532.
  19. Fabian M., Pinakidou F., Tolnai I, Czompoly O., Osan J. Lanthanide (Ce, Nd, Eu) environments and leaching behavior in borosilicate glasses // Scientific Reports. 2021. V. 11. 13272.
  20. Frankel G.S., Vienna J.D., Lian J., Scully J.R., Gin S., Ryan J.V., Wang J., Kim S.H., Windl W., Du J. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals // Materials Degradation. 2018. V. 2 (15). P. 1–16.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (2MB)
3.

下载 (260KB)
4.

下载 (1MB)
5.

下载 (135KB)

版权所有 © И.М. Мельникова, М.Ю. Каленова, А.С. Щепин, С.В. Юдинцев, 2023