Global geodynamic model of the Earth and its application for the Arctic region

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A geodynamic model of the modern Earth is constructed based on the SMEAN2 global seismic tomography model with an emphasis on the Arctic region. For a spherical Earth model, a solution to the Stokes equation for a viscous fluid was obtained based on seismic tomography data using the finite element method using the CitcomS code. The resulting distributions of temperature anomalies and velocity fields of mantle flows explain the main features of the modern geodynamics of the Arctic region. The temperature difference in the subcrustal mantle between the relatively “cold” western Arctic shelf (Barents and Kara seas) and the “warmer” eastern Arctic shelf (from the Laptev Sea to the Bering Strait) reaches 100 degrees, which correlates with the observed intense methane emission from the shallow shelf of the Eastern Arctic caused by permafrost degradation and destruction of gas hydrates against the background of elevated environmental temperatures. The greenhouse effect of methane in the atmosphere, in turn, contributes to climate warming in the Arctic. The region of Iceland and eastern part of Greenland, under the influence of the mantle upwelling, is characterized by a hot subcrustal mantle and increased heat flow at the surface, causing instability and melting of the Greenland ice sheet from below.

Texto integral

Acesso é fechado

Sobre autores

L. Lobkovsky

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: aabaranov@gmail.com

Academician of the RAS

Rússia, Moscow

A. Baranov

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: aabaranov@gmail.com
Rússia, Moscow

A. Bobrov

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: aabaranov@gmail.com
Rússia, Moscow

A. Chuvaev

MIREA – Russian Technological University

Email: aabaranov@gmail.com
Rússia, Moscow

Bibliografia

  1. Lobkovsky L. I., Shipilov E. V., Kononov M. V. Geodynamic Model of Upper Mantle Convection and Transformations of the Arctic Lithosphere in the Mesozoic and Cenozoic // Izvestiya. Physics of the Solid Earth. 2013. V. 49. P. 767–785.
  2. Lobkovsky L. I. Deformable Plate Tectonics and Regional Geodynamic Model of the Arctic Region and Northeastern Asia // Russian Geology and Geophysics. 2016. V. 57(3). P. 371–386.
  3. Laverov N. P., Lobkovsky L. I., Kononov M. V., Dobretsov N. L., Vernikovsky V. A., Sokolov S. D., Shipilov E. V. A Geodynamic Model of the Evolution of the Arctic Basin and Adjacent Territories in the Mesozoic and Cenozoic and the Outer Limit of the Russian Continental Shelf // Geotectonics. 2013. V. 47. P. 1–30.
  4. Лобковский Л. И., Габсатаров Ю. В., Алексеев Д. А., Владимирова И. С., Рамазанов М. М., Котелкин В. Д. Геодинамическая модель взаимодействия зоны субдукции с континентальной литосферой в области перехода от Тихого океана к Восточной Азии // Геодинамика и тектонофизика. 2022. Т. 13. № 5. P. 0675.
  5. Лобковский Л. И., Габсатаров Ю. В., Алексеев Д. А., Владимирова И. С., Рамазанов М. М., Котелкин В. Д. Geodynamic Model of the Interaction Between the Continental Lithosphere and the Active Continental Margin in East Asia // Russian Journal of Earth Sciences. 2022. V. 22. ES1005.
  6. Becker T. W., Boschi L. A comparison of tomographic and geodynamic mantle models // Geochem. Geophys. Geosyst. 2002. V. 3. 10.129/2001GC000168
  7. Lee C. K., Han S. C., Steinberger B. Influence of variable uncertainties in seismic tomography models on constraining mantle viscosity from geoid observations. // Physics of the Earth and Planetary Interiors. 2011. V. 184(1–2). P. 51–62.
  8. Megnin C., Romanowicz B. The shear velocity structure of the mantle from the inversion of body, surface, and higher modes waveforms // Geophys. J. Int. 2000. V. 143. P. 709–728.
  9. Schubert G., Turcotte D. L., Olson P. Mantle Convection in the Earth and Planets. Cambridge Univ. Press, New York, 2001. 940 P.
  10. Bobrov A. M., Baranov A. A. Thermochemical Mantle Convection with Drifting Deformable Continents: Main Features of Supercontinent Cycle // Pure and Applied Geophysics. 2019. V. 176. № . 8. P. 3545–3565.
  11. Hughes T. J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis// Prentice-Hall, Inc., Englewood Cliffs, NewJersey. 1987.
  12. Ramage A., Wathen A. J. Iterative solution techniques for the Stokes and Navier-Stokes equations //Int. J. Numer. Methods. Fluids. 1994. V. 19 P. 67–83.
  13. Fei Y., Orman J. V., Li J., van Westrenen W., Sanloup C., Minarik W., Hirose K., Komabayashi T., Walter M., Funakoshi K. Experimentally determined postspinel transformation boundary in Mg 2 SiO 4 using MgO as an internal pressure standard and its geophysical implications // J. Geophys. Res. 2004. V. 109. B02305.
  14. Zhong S., Zuber M. T., Moresi L. N., Gurnis M. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection // Journal of Geophysical Research: Solid Earth. 2000. V. 105. N. B5. P. 11063–11082.
  15. Баранов А., Лобковский Л. И., Бобров А. М. Глобальная геодинамическая модель современной Земли и ее приложение для Антарктиды. //Доклады Российской Академии наук. Науки о Земле. 2023. Т. 512 № 1. С. 100–105.
  16. Чуваев А. В., Баранов А. А., Бобров А. М. Численное моделирование конвекции в мантии Земли с использованием облачных технологий // Вычислительные технологии. 2020. Т. 25. № 2. C. 103–117.
  17. Lobkovsky L. I., Kotelkin V. D. Numerical analysis of geodynamic evolution of the Earth based on a thermochemical model of the mantle convection // Russian Journal of Earth Sciences. 2004. V.6 (1). P. 49–58.
  18. Shakhova N., Semiletov I., Salyuk A., Joussupov V., Kosmach D., Gustaffson O. Extensive methan venting to the atmosphere from sediments of the East Arctic Shelf // Science. 2010. V. 327. P. 1246–1250.
  19. Artemieva I. M. Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method // Earth-Sci. Rev. 2019. V. 188. P. 469–481.
  20. Lobkovsky L., Baranov A., Garagash I., Ramazanov M., Vladimirova I., Gabsatarov Yu., Alekseev D., Semiletov I. Large earthquakes in subduction zones around the polar regions as a possible reason for rapid climate warming in the Arctic and glacier collapse in West Antarctica // Geosciences. 2023. V. 13. P. 171.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Distribution of temperature anomalies in the mantle at a depth of 75 km. The black line shows the contours of the continents. The red lines are sections of the Earth at 20 and 200 degrees east latitude. The pink lines are sections of the Earth at 160 and 340 degrees east longitude.

Baixar (62KB)
3. Рис. 2. Распределение аномалий температуры и скоростей течений в мантии Земли в сечении по 20 и 200 градусу восточной долготы (красная рамка на рис. 1). Кружками показаны зоны субдукции: 1 – Алеутская, 2 – Средиземноморская.

Baixar (56KB)
4. Fig. 3. Distribution of temperature anomalies and flow velocities in the Earth’s mantle in the cross-section at 160 and 340 degrees east longitude (pink frame in Fig. 1).

Baixar (84KB)
5. Fig. 4. Spherical equidistant projection centered on the North Pole. The color scale shows temperature anomalies in the mantle at a depth of 75 km, and the black lines show the contours of the continents.

Baixar (90KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024